Results 1  10
of
106,852
Join Dependency Testing, LoomisWhitney Join, and Triangle Enumeration
"... In this paper, we revisit two fundamental problems in database theory. The first one is called join dependency (JD) testing, where we are given a relation r and a JD, and need to determine whether the JD holds on r. The second problem is called JD existence testing, where we need to determine if the ..."
Abstract
 Add to MetaCart
is to minimize the computation cost because the problem is known to be solvable in polynomial time. We present a new algorithm for solving the problem I/Oefficiently in the external memory model. Our algorithm in fact settles the closely related LoomisWhitney (LW) enumeration problem, and as a side product
Community detection in graphs
, 2009
"... The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices of th ..."
Abstract

Cited by 801 (1 self)
 Add to MetaCart
The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices
Near Optimal Signal Recovery From Random Projections: Universal Encoding Strategies?
, 2004
"... Suppose we are given a vector f in RN. How many linear measurements do we need to make about f to be able to recover f to within precision ɛ in the Euclidean (ℓ2) metric? Or more exactly, suppose we are interested in a class F of such objects— discrete digital signals, images, etc; how many linear m ..."
Abstract

Cited by 1513 (20 self)
 Add to MetaCart
Suppose we are given a vector f in RN. How many linear measurements do we need to make about f to be able to recover f to within precision ɛ in the Euclidean (ℓ2) metric? Or more exactly, suppose we are interested in a class F of such objects— discrete digital signals, images, etc; how many linear
Why a diagram is (sometimes) worth ten thousand words
 Cognitive Science
, 1987
"... We distinguish diagrammatic from sentential paperandpencil representationsof information by developing alternative models of informationprocessing systems that are informationally equivalent and that can be characterized as sentential or diagrammatic. Sentential representations are sequential, li ..."
Abstract

Cited by 777 (2 self)
 Add to MetaCart
for use. We then contrast the computational efficiency of these representotions for solving several illustrative problems in mothematics and physics. When two representotions are informationally equivolent, their computational efficiency depends on the informationprocessing operators that act on them
FastMap: A Fast Algorithm for Indexing, DataMining and Visualization of Traditional and Multimedia Datasets
, 1995
"... A very promising idea for fast searching in traditional and multimedia databases is to map objects into points in kd space, using k featureextraction functions, provided by a domain expert [25]. Thus, we can subsequently use highly finetuned spatial access methods (SAMs), to answer several types ..."
Abstract

Cited by 497 (23 self)
 Add to MetaCart
types of queries, including the `Query By Example' type (which translates to a range query); the `all pairs' query (which translates to a spatial join [8]); the nearestneighbor or bestmatch query, etc. However, designing feature extraction functions can be hard. It is relatively easier for a
Graphical models, exponential families, and variational inference
, 2008
"... The formalism of probabilistic graphical models provides a unifying framework for capturing complex dependencies among random variables, and building largescale multivariate statistical models. Graphical models have become a focus of research in many statistical, computational and mathematical fiel ..."
Abstract

Cited by 800 (26 self)
 Add to MetaCart
The formalism of probabilistic graphical models provides a unifying framework for capturing complex dependencies among random variables, and building largescale multivariate statistical models. Graphical models have become a focus of research in many statistical, computational and mathematical
Implicit Fairing of Irregular Meshes using Diffusion and Curvature Flow
, 1999
"... In this paper, we develop methods to rapidly remove rough features from irregularly triangulated data intended to portray a smooth surface. The main task is to remove undesirable noise and uneven edges while retaining desirable geometric features. The problem arises mainly when creating highfidelit ..."
Abstract

Cited by 553 (24 self)
 Add to MetaCart
fidelity computer graphics objects using imperfectlymeasured data from the real world. Our approach contains three novel features: an implicit integration method to achieve efficiency, stability, and large timesteps; a scaledependent Laplacian operator to improve the diffusion process; and finally, a robust
Primitives for the manipulation of general subdivisions and the computations of Voronoi diagrams
 ACM Tmns. Graph
, 1985
"... The following problem is discussed: Given n points in the plane (the sites) and an arbitrary query point 4, find the site that is closest to q. This problem can be solved by constructing the Voronoi diagram of the given sites and then locating the query point in one of its regions. Two algorithms ar ..."
Abstract

Cited by 543 (11 self)
 Add to MetaCart
The following problem is discussed: Given n points in the plane (the sites) and an arbitrary query point 4, find the site that is closest to q. This problem can be solved by constructing the Voronoi diagram of the given sites and then locating the query point in one of its regions. Two algorithms are given, one that constructs the Voronoi diagram in O(n log n) time, and another that inserts a new site in O(n) time. Both are based on the use of the Voronoi dual, or Delaunay triangulation, and are simple enough to be of practical value. The simplicity of both algorithms can be attributed to the separation of the geometrical and topological aspects of the problem and to the use of two simple but powerful primitives, a geometric predicate and an operator for manipulating the topology of the diagram. The topology is represented by a new data structure for generalized diagrams, that is, embeddings of graphs in twodimensional manifolds. This structure represents simultaneously an embedding, its dual, and its mirror image. Furthermore, just two operators are sufficient for building and modifying arbitrary diagrams.
Directional Statistics and Shape Analysis
, 1995
"... There have been various developments in shape analysis in the last decade. We describe here some relationships of shape analysis with directional statistics. For shape, rotations are to be integrated out or to be optimized over whilst they are the basis for directional statistics. However, various c ..."
Abstract

Cited by 775 (31 self)
 Add to MetaCart
There have been various developments in shape analysis in the last decade. We describe here some relationships of shape analysis with directional statistics. For shape, rotations are to be integrated out or to be optimized over whilst they are the basis for directional statistics. However, various concepts are connected. In particular, certain distributions of directional statistics have emerged in shape analysis, such a distribution is Complex Bingham Distribution. This paper first gives some background to shape analysis and then it goes on to directional distributions and their applications to shape analysis. Note that the idea of using tangent space for analysis is common to both manifold as well. 1 Introduction Consider shapes of configurations of points in Euclidean space. There are various contexts in which k labelled points (or "landmarks") x 1 ; :::; x k in IR m are given and interest is in the shape of (x 1 ; :::; x k ). Example 1 The microscopic fossil Globorotalia truncat...
Dryad: Distributed DataParallel Programs from Sequential Building Blocks
 In EuroSys
, 2007
"... Dryad is a generalpurpose distributed execution engine for coarsegrain dataparallel applications. A Dryad application combines computational “vertices ” with communication “channels ” to form a dataflow graph. Dryad runs the application by executing the vertices of this graph on a set of availa ..."
Abstract

Cited by 730 (27 self)
 Add to MetaCart
Dryad is a generalpurpose distributed execution engine for coarsegrain dataparallel applications. A Dryad application combines computational “vertices ” with communication “channels ” to form a dataflow graph. Dryad runs the application by executing the vertices of this graph on a set of available computers, communicating as appropriate through files, TCP pipes, and sharedmemory FIFOs. The vertices provided by the application developer are quite simple and are usually written as sequential programs with no thread creation or locking. Concurrency arises from Dryad scheduling vertices to run simultaneously on multiple computers, or on multiple CPU cores within a computer. The application can discover the size and placement of data at run time, and modify the graph as the computation progresses to make efficient use of the available resources. Dryad is designed to scale from powerful multicore single computers, through small clusters of computers, to data centers with thousands of computers. The Dryad execution engine handles all the difficult problems of creating a large distributed, concurrent application: scheduling the use of computers and their CPUs, recovering from communication or computer failures, and transporting data between vertices.
Results 1  10
of
106,852