Results 1  10
of
118,003
Classical negation in logic programs and disjunctive databases
 New Generation Computing
, 1991
"... An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic progra ..."
Abstract

Cited by 1050 (76 self)
 Add to MetaCart
An important limitation of traditional logic programming as a knowledge representation tool, in comparison with classical logic, is that logic programming does not allow us to deal directly with incomplete information. In order to overcome this limitation, we extend the class of general logic programs by including classical negation, in addition to negationasfailure. The semantics of such extended programs is based on the method of stable models. The concept of a disjunctive database can be extended in a similar way. We show that some facts of commonsense knowledge can be represented by logic programs and disjunctive databases more easily when classical negation is available. Computationally, classical negation can be eliminated from extended programs by a simple preprocessor. Extended programs are identical to a special case of default theories in the sense of Reiter. 1
Actions as spacetime shapes
 In ICCV
, 2005
"... Human action in video sequences can be seen as silhouettes of a moving torso and protruding limbs undergoing articulated motion. We regard human actions as threedimensional shapes induced by the silhouettes in the spacetime volume. We adopt a recent approach [14] for analyzing 2D shapes and genera ..."
Abstract

Cited by 642 (4 self)
 Add to MetaCart
Human action in video sequences can be seen as silhouettes of a moving torso and protruding limbs undergoing articulated motion. We regard human actions as threedimensional shapes induced by the silhouettes in the spacetime volume. We adopt a recent approach [14] for analyzing 2D shapes and generalize it to deal with volumetric spacetime action shapes. Our method utilizes properties of the solution to the Poisson equation to extract spacetime features such as local spacetime saliency, action dynamics, shape structure and orientation. We show that these features are useful for action recognition, detection and clustering. The method is fast, does not require video alignment and is applicable in (but not limited to) many scenarios where the background is known. Moreover, we demonstrate the robustness of our method to partial occlusions, nonrigid deformations, significant changes in scale and viewpoint, high irregularities in the performance of an action, and low quality video. Index Terms Action representation, action recognition, spacetime analysis, shape analysis, poisson equation
Fast Planning Through Planning Graph Analysis
 ARTIFICIAL INTELLIGENCE
, 1995
"... We introduce a new approach to planning in STRIPSlike domains based on constructing and analyzing a compact structure we call a Planning Graph. We describe a new planner, Graphplan, that uses this paradigm. Graphplan always returns a shortest possible partialorder plan, or states that no valid pla ..."
Abstract

Cited by 1165 (3 self)
 Add to MetaCart
We introduce a new approach to planning in STRIPSlike domains based on constructing and analyzing a compact structure we call a Planning Graph. We describe a new planner, Graphplan, that uses this paradigm. Graphplan always returns a shortest possible partialorder plan, or states that no valid plan exists. We provide empirical evidence in favor of this approach, showing that Graphplan outperforms the totalorder planner, Prodigy, and the partialorder planner, UCPOP, on a variety of interesting natural and artificial planning problems. We also give empirical evidence that the plans produced by Graphplan are quite sensible. Since searches made by this approach are fundamentally different from the searches of other common planning methods, they provide a new perspective on the planning problem.
A theory of fairness, competition and cooperation
 Quarterly Journal of Economics
, 1999
"... de/ls_schmidt/index.html ..."
An Extended Set of Fortran Basic Linear Algebra Subprograms
 ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE
, 1986
"... This paper describes an extension to the set of Basic Linear Algebra Subprograms. The extensions are targeted at matrixvector operations which should provide for efficient and portable implementations of algorithms for high performance computers. ..."
Abstract

Cited by 526 (72 self)
 Add to MetaCart
This paper describes an extension to the set of Basic Linear Algebra Subprograms. The extensions are targeted at matrixvector operations which should provide for efficient and portable implementations of algorithms for high performance computers.
Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456: 53–59
, 2008
"... ..."
Theoretical improvements in algorithmic efficiency for network flow problems

, 1972
"... This paper presents new algorithms for the maximum flow problem, the Hitchcock transportation problem, and the general minimumcost flow problem. Upper bounds on ... the numbers of steps in these algorithms are derived, and are shown to compale favorably with upper bounds on the numbers of steps req ..."
Abstract

Cited by 565 (0 self)
 Add to MetaCart
This paper presents new algorithms for the maximum flow problem, the Hitchcock transportation problem, and the general minimumcost flow problem. Upper bounds on ... the numbers of steps in these algorithms are derived, and are shown to compale favorably with upper bounds on the numbers of steps required by earlier algorithms. First, the paper states the maximum flow problem, gives the FordFulkerson labeling method for its solution, and points out that an improper choice of flow augmenting paths can lead to severe computational difficulties. Then rules of choice that avoid these difficulties are given. We show that, if each flow augmentation is made along an augmenting path having a minimum number of arcs, then a maximum flow in an nnode network will be obtained after no more than ~(n a n) augmentations; and then we show that if each flow change is chosen to produce a maximum increase in the flow value then, provided the capacities are integral, a maximum flow will be determined within at most 1 + logM/(M1) if(t, S) augmentations, wheref*(t, s) is the value of the maximum flow and M is the maximum number of arcs across a cut. Next a new algorithm is given for the minimumcost flow problem, in which all shortestpath computations are performed on networks with all weights nonnegative. In particular, this
Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. sect
 A
, 1991
"... Map interpretation remains a critical step in solving the structure of a macromolecule. Errors introduced at this early stage may persist throughout crystallographic refinement and result in an incorrect structure. The normally quoted crystallographic residual is often a poor description for the q ..."
Abstract

Cited by 1016 (9 self)
 Add to MetaCart
Map interpretation remains a critical step in solving the structure of a macromolecule. Errors introduced at this early stage may persist throughout crystallographic refinement and result in an incorrect structure. The normally quoted crystallographic residual is often a poor description for the quality of the model. Strategies and tools are described that help to alleviate this problem. These simplify the modelbuilding process, quantify the goodness of fit of the model on a perresidue basis and locate possible errors in peptide and sidechain conformations.
Results 1  10
of
118,003