Results 1 - 10
of
1,582,814
An iterative thresholding algorithm for linear inverse problems with a sparsity constraint
, 2008
"... ..."
Least-Squares Policy Iteration
- JOURNAL OF MACHINE LEARNING RESEARCH
, 2003
"... We propose a new approach to reinforcement learning for control problems which combines value-function approximation with linear architectures and approximate policy iteration. This new approach ..."
Abstract
-
Cited by 461 (12 self)
- Add to MetaCart
We propose a new approach to reinforcement learning for control problems which combines value-function approximation with linear architectures and approximate policy iteration. This new approach
Lambertian Reflectance and Linear Subspaces
, 2000
"... We prove that the set of all reflectance functions (the mapping from surface normals to intensities) produced by Lambertian objects under distant, isotropic lighting lies close to a 9D linear subspace. This implies that, in general, the set of images of a convex Lambertian object obtained under a wi ..."
Abstract
-
Cited by 514 (20 self)
- Add to MetaCart
the effects of Lambertian materials as the analog of a convolution. These results allow us to construct algorithms for object recognition based on linear methods as well as algorithms that use convex optimization to enforce non-negative lighting functions. Finally, we show a simple way to enforce non
Using Linear Algebra for Intelligent Information Retrieval
- SIAM REVIEW
, 1995
"... Currently, most approaches to retrieving textual materials from scientific databases depend on a lexical match between words in users' requests and those in or assigned to documents in a database. Because of the tremendous diversity in the words people use to describe the same document, lexical ..."
Abstract
-
Cited by 672 (18 self)
- Add to MetaCart
, lexical methods are necessarily incomplete and imprecise. Using the singular value decomposition (SVD), one can take advantage of the implicit higher-order structure in the association of terms with documents by determining the SVD of large sparse term by document matrices. Terms and documents represented
Iterative point matching for registration of free-form curves and surfaces
, 1994
"... A heuristic method has been developed for registering two sets of 3-D curves obtained by using an edge-based stereo system, or two dense 3-D maps obtained by using a correlation-based stereo system. Geometric matching in general is a difficult unsolved problem in computer vision. Fortunately, in ma ..."
Abstract
-
Cited by 659 (7 self)
- Add to MetaCart
A heuristic method has been developed for registering two sets of 3-D curves obtained by using an edge-based stereo system, or two dense 3-D maps obtained by using a correlation-based stereo system. Geometric matching in general is a difficult unsolved problem in computer vision. Fortunately
Singularity Detection And Processing With Wavelets
- IEEE Transactions on Information Theory
, 1992
"... Most of a signal information is often found in irregular structures and transient phenomena. We review the mathematical characterization of singularities with Lipschitz exponents. The main theorems that estimate local Lipschitz exponents of functions, from the evolution across scales of their wavele ..."
Abstract
-
Cited by 590 (13 self)
- Add to MetaCart
Most of a signal information is often found in irregular structures and transient phenomena. We review the mathematical characterization of singularities with Lipschitz exponents. The main theorems that estimate local Lipschitz exponents of functions, from the evolution across scales
Iterative decoding of binary block and convolutional codes
- IEEE Trans. Inform. Theory
, 1996
"... Abstract- Iterative decoding of two-dimensional systematic convolutional codes has been termed “turbo ” (de)coding. Using log-likelihood algebra, we show that any decoder can he used which accepts soft inputs-including a priori values-and delivers soft outputs that can he split into three terms: the ..."
Abstract
-
Cited by 600 (43 self)
- Add to MetaCart
: the soft channel and a priori inputs, and the extrinsic value. The extrinsic value is used as an a priori value for the next iteration. Decoding algorithms in the log-likelihood domain are given not only for convolutional codes hut also for any linear binary systematic block code. The iteration
An iterative image registration technique with an application to stereo vision
- In IJCAI81
, 1981
"... Image registration finds a variety of applications in computer vision. Unfortunately, traditional image registration techniques tend to be costly. We present a new image registration technique that makes use of the spatial intensity gradient of the images to find a good match using a type of Newton- ..."
Abstract
-
Cited by 2872 (35 self)
- Add to MetaCart
-Raphson iteration. Our technique is faster because it examines far fewer potential matches between the images than existing techniques. Furthermore, this registration technique can be generalized to handle rotation, scaling and shearing. We show show our technique can be adapted for use in a stereo vision system. 2
GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems
- SIAM J. SCI. STAT. COMPUT
, 1986
"... We present an iterative method for solving linear systems, which has the property ofminimizing at every step the norm of the residual vector over a Krylov subspace. The algorithm is derived from the Arnoldi process for constructing an l2-orthogonal basis of Krylov subspaces. It can be considered a ..."
Abstract
-
Cited by 2046 (40 self)
- Add to MetaCart
We present an iterative method for solving linear systems, which has the property ofminimizing at every step the norm of the residual vector over a Krylov subspace. The algorithm is derived from the Arnoldi process for constructing an l2-orthogonal basis of Krylov subspaces. It can be considered
LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares
- ACM Trans. Math. Software
, 1982
"... An iterative method is given for solving Ax ~ffi b and minU Ax- b 112, where the matrix A is large and sparse. The method is based on the bidiagonalization procedure of Golub and Kahan. It is analytically equivalent to the standard method of conjugate gradients, but possesses more favorable numerica ..."
Abstract
-
Cited by 649 (21 self)
- Add to MetaCart
An iterative method is given for solving Ax ~ffi b and minU Ax- b 112, where the matrix A is large and sparse. The method is based on the bidiagonalization procedure of Golub and Kahan. It is analytically equivalent to the standard method of conjugate gradients, but possesses more favorable
Results 1 - 10
of
1,582,814