Results 1  10
of
276,579
Invertible Classes
"... Abstract. This paper considers when one can invert general recursive operators which map a class of functions F to F. In this regard, we study four different notions of inversion. We additionally consider enumeration of operators which cover all general recursive operators which map F to F in the se ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
Abstract. This paper considers when one can invert general recursive operators which map a class of functions F to F. In this regard, we study four different notions of inversion. We additionally consider enumeration of operators which cover all general recursive operators which map F to F
Dynamic conditional correlation: A simple class of multivariate generalized autoregressive conditional heteroskedasticity models
 Journal of Business and Economic Statistics
, 2002
"... Time varying correlations are often estimated with Multivariate Garch models that are linear in squares and cross products of the data. A new class of multivariate models called dynamic conditional correlation (DCC) models is proposed. These have the flexibility of univariate GARCH models coupled wi ..."
Abstract

Cited by 684 (17 self)
 Add to MetaCart
Time varying correlations are often estimated with Multivariate Garch models that are linear in squares and cross products of the data. A new class of multivariate models called dynamic conditional correlation (DCC) models is proposed. These have the flexibility of univariate GARCH models coupled
Quantization Index Modulation: A Class of Provably Good Methods for Digital Watermarking and Information Embedding
 IEEE TRANS. ON INFORMATION THEORY
, 1999
"... We consider the problem of embedding one signal (e.g., a digital watermark), within another "host" signal to form a third, "composite" signal. The embedding is designed to achieve efficient tradeoffs among the three conflicting goals of maximizing informationembedding rate, mini ..."
Abstract

Cited by 495 (15 self)
 Add to MetaCart
, minimizing distortion between the host signal and composite signal, and maximizing the robustness of the embedding. We introduce new classes of embedding methods, termed quantization index modulation (QIM) and distortioncompensated QIM (DCQIM), and develop convenient realizations in the form of what we
When do the Fibonacci invertible classes modulo M form a subgroup?
"... In this paper, we look at the invertible classes modulo M representable as Fibonacci numbers and we ask when these classes, say FM, form a multiplicative group. We show that ifM itself is a Fibonacci number, thenM ≤ 8; ifM is a Lucas number, thenM ≤ 7. We also show that if x ≥ 3, the number of M ≤ ..."
Abstract
 Add to MetaCart
In this paper, we look at the invertible classes modulo M representable as Fibonacci numbers and we ask when these classes, say FM, form a multiplicative group. We show that ifM itself is a Fibonacci number, thenM ≤ 8; ifM is a Lucas number, thenM ≤ 7. We also show that if x ≥ 3, the number of M
Additive Logistic Regression: a Statistical View of Boosting
 Annals of Statistics
, 1998
"... Boosting (Freund & Schapire 1996, Schapire & Singer 1998) is one of the most important recent developments in classification methodology. The performance of many classification algorithms can often be dramatically improved by sequentially applying them to reweighted versions of the input dat ..."
Abstract

Cited by 1719 (25 self)
 Add to MetaCart
data, and taking a weighted majority vote of the sequence of classifiers thereby produced. We show that this seemingly mysterious phenomenon can be understood in terms of well known statistical principles, namely additive modeling and maximum likelihood. For the twoclass problem, boosting can
Near Optimal Signal Recovery From Random Projections: Universal Encoding Strategies?
, 2004
"... Suppose we are given a vector f in RN. How many linear measurements do we need to make about f to be able to recover f to within precision ɛ in the Euclidean (ℓ2) metric? Or more exactly, suppose we are interested in a class F of such objects— discrete digital signals, images, etc; how many linear m ..."
Abstract

Cited by 1513 (20 self)
 Add to MetaCart
Suppose we are given a vector f in RN. How many linear measurements do we need to make about f to be able to recover f to within precision ɛ in the Euclidean (ℓ2) metric? Or more exactly, suppose we are interested in a class F of such objects— discrete digital signals, images, etc; how many linear
Using Discriminant Eigenfeatures for Image Retrieval
, 1996
"... This paper describes the automatic selection of features from an image training set using the theories of multidimensional linear discriminant analysis and the associated optimal linear projection. We demonstrate the effectiveness of these Most Discriminating Features for viewbased class retrieval ..."
Abstract

Cited by 504 (15 self)
 Add to MetaCart
This paper describes the automatic selection of features from an image training set using the theories of multidimensional linear discriminant analysis and the associated optimal linear projection. We demonstrate the effectiveness of these Most Discriminating Features for viewbased class
A Tutorial on Visual Servo Control
 IEEE Transactions on Robotics and Automation
, 1996
"... This paper provides a tutorial introduction to visual servo control of robotic manipulators. Since the topic spans many disciplines our goal is limited to providing a basic conceptual framework. We begin by reviewing the prerequisite topics from robotics and computer vision, including a brief review ..."
Abstract

Cited by 822 (25 self)
 Add to MetaCart
review of coordinate transformations, velocity representation, and a description of the geometric aspects of the image formation process. We then present a taxonomy of visual servo control systems. The two major classes of systems, positionbased and imagebased systems, are then discussed. Since any
Probabilistic Latent Semantic Indexing
, 1999
"... Probabilistic Latent Semantic Indexing is a novel approach to automated document indexing which is based on a statistical latent class model for factor analysis of count data. Fitted from a training corpus of text documents by a generalization of the Expectation Maximization algorithm, the utilized ..."
Abstract

Cited by 1207 (11 self)
 Add to MetaCart
Probabilistic Latent Semantic Indexing is a novel approach to automated document indexing which is based on a statistical latent class model for factor analysis of count data. Fitted from a training corpus of text documents by a generalization of the Expectation Maximization algorithm, the utilized
Domain names  Implementation and Specification
 RFC883, USC/Information Sciences Institute
, 1983
"... This RFC describes the details of the domain system and protocol, and assumes that the reader is familiar with the concepts discussed in a companion RFC, "Domain Names Concepts and Facilities " [RFC1034]. The domain system is a mixture of functions and data types which are an official pr ..."
Abstract

Cited by 715 (9 self)
 Add to MetaCart
and the Internet class RR data formats (e.g., host addresses). Since the previous RFC set, several definitions have changed, so some previous definitions are obsolete. Experimental or obsolete features are clearly marked in these RFCs, and such information should be used with caution. The reader is especially
Results 1  10
of
276,579