Results 1  10
of
66,123
The emotional dog and its rational tail: a social intuitionist approach to moral judgment
 Psychological Review
, 2001
"... This is the manuscript that was published, with only minor copyediting alterations, as: Haidt, J. (2001). The emotional dog and its rational tail: A social intuitionist approach to moral judgment. Psychological Review. 108, 814834 Copyright 2001, American Psychological Association To obtain a repr ..."
Abstract

Cited by 629 (20 self)
 Add to MetaCart
This is the manuscript that was published, with only minor copyediting alterations, as: Haidt, J. (2001). The emotional dog and its rational tail: A social intuitionist approach to moral judgment. Psychological Review. 108, 814834 Copyright 2001, American Psychological Association To obtain a
International Journal of Foundations of Computer Science c © World Scientific Publishing Company Light Affine Logic as a Programming Language: a First Contribution
"... Communicated by Editor’s name This work is about an experimental paradigmatic functional language for programming with PTIME functions. The language is designed from Intuitionistic Light Affine Logic. It can be typed automatically by a type inference algorithm that deduces polymorphic types a ̀ l ..."
Abstract
 Add to MetaCart
Communicated by Editor’s name This work is about an experimental paradigmatic functional language for programming with PTIME functions. The language is designed from Intuitionistic Light Affine Logic. It can be typed automatically by a type inference algorithm that deduces polymorphic types a ̀
Logical foundations of objectoriented and framebased languages
 JOURNAL OF THE ACM
, 1995
"... We propose a novel formalism, called Frame Logic (abbr., Flogic), that accounts in a clean and declarative fashion for most of the structural aspects of objectoriented and framebased languages. These features include object identity, complex objects, inheritance, polymorphic types, query methods, ..."
Abstract

Cited by 880 (64 self)
 Add to MetaCart
We propose a novel formalism, called Frame Logic (abbr., Flogic), that accounts in a clean and declarative fashion for most of the structural aspects of objectoriented and framebased languages. These features include object identity, complex objects, inheritance, polymorphic types, query methods
Intersection types for light affine lambda calculus
 In Proceedings of 3rd Workshop on Intersection Types and Related Systems (ITRS’04
, 2004
"... Light Affine Lambda Calculus is a term calculus for polynomial time computation ([12]). Some of the terms of Light Affine Lambda Calculus must however be regarded as errors. Intuitionistic Light Affine Logic (ILAL) types only terms without errors, but not all of them. We introduce two type assignmen ..."
Abstract

Cited by 6 (1 self)
 Add to MetaCart
Light Affine Lambda Calculus is a term calculus for polynomial time computation ([12]). Some of the terms of Light Affine Lambda Calculus must however be regarded as errors. Intuitionistic Light Affine Logic (ILAL) types only terms without errors, but not all of them. We introduce two type
Bilattices and the Semantics of Logic Programming
, 1989
"... Bilattices, due to M. Ginsberg, are a family of truth value spaces that allow elegantly for missing or conflicting information. The simplest example is Belnap's fourvalued logic, based on classical twovalued logic. Among other examples are those based on finite manyvalued logics, and on prob ..."
Abstract

Cited by 444 (13 self)
 Add to MetaCart
Bilattices, due to M. Ginsberg, are a family of truth value spaces that allow elegantly for missing or conflicting information. The simplest example is Belnap's fourvalued logic, based on classical twovalued logic. Among other examples are those based on finite manyvalued logics
Generic Schema Matching with Cupid
 In The VLDB Journal
, 2001
"... Schema matching is a critical step in many applications, such as XML message mapping, data warehouse loading, and schema integration. In this paper, we investigate algorithms for generic schema matching, outside of any particular data model or application. We first present a taxonomy for past s ..."
Abstract

Cited by 593 (17 self)
 Add to MetaCart
Schema matching is a critical step in many applications, such as XML message mapping, data warehouse loading, and schema integration. In this paper, we investigate algorithms for generic schema matching, outside of any particular data model or application. We first present a taxonomy for past solutions, showing that a rich range of techniques is available. We then propose a new algorithm, Cupid, that discovers mappings between schema elements based on their names, data types, constraints, and schema structure, using a broader set of techniques than past approaches. Some of our innovations are the integrated use of linguistic and structural matching, contextdependent matching of shared types, and a bias toward leaf structure where much of the schema content resides. After describing our algorithm, we present experimental results that compare Cupid to two other schema matching systems.
FAST VOLUME RENDERING USING A SHEARWARP FACTORIZATION OF THE VIEWING TRANSFORMATION
, 1995
"... Volume rendering is a technique for visualizing 3D arrays of sampled data. It has applications in areas such as medical imaging and scientific visualization, but its use has been limited by its high computational expense. Early implementations of volume rendering used bruteforce techniques that req ..."
Abstract

Cited by 541 (2 self)
 Add to MetaCart
Volume rendering is a technique for visualizing 3D arrays of sampled data. It has applications in areas such as medical imaging and scientific visualization, but its use has been limited by its high computational expense. Early implementations of volume rendering used bruteforce techniques that require on the order of 100 seconds to render typical data sets on a workstation. Algorithms with optimizations that exploit coherence in the data have reduced rendering times to the range of ten seconds but are still not fast enough for interactive visualization applications. In this thesis we present a family of volume rendering algorithms that reduces rendering times to one second. First we present a scanlineorder volume rendering algorithm that exploits coherence in both the volume data and the image. We show that scanlineorder algorithms are fundamentally more efficient than commonlyused ray casting algorithms because the latter must perform analytic geometry calculations (e.g. intersecting rays with axisaligned boxes). The new scanlineorder algorithm simply streams through the volume and the image in storage order. We describe variants of the algorithm for both parallel and perspective projections and
Shape Matching and Object Recognition Using Shape Contexts
 IEEE Transactions on Pattern Analysis and Machine Intelligence
, 2001
"... We present a novel approach to measuring similarity between shapes and exploit it for object recognition. In our framework, the measurement of similarity is preceded by (1) solv ing for correspondences between points on the two shapes, (2) using the correspondences to estimate an aligning transform ..."
Abstract

Cited by 1787 (21 self)
 Add to MetaCart
We present a novel approach to measuring similarity between shapes and exploit it for object recognition. In our framework, the measurement of similarity is preceded by (1) solv ing for correspondences between points on the two shapes, (2) using the correspondences to estimate an aligning transform. In order to solve the correspondence problem, we attach a descriptor, the shape context, to each point. The shape context at a reference point captures the distribution of the remaining points relative to it, thus offering a globally discriminative characterization. Corresponding points on two similar shapes will have similar shape con texts, enabling us to solve for correspondences as an optimal assignment problem. Given the point correspondences, we estimate the transformation that best aligns the two shapes; reg ularized thin plate splines provide a flexible class of transformation maps for this purpose. The dissimilarity between the two shapes is computed as a sum of matching errors between corresponding points, together with a term measuring the magnitude of the aligning trans form. We treat recognition in a nearestneighbor classification framework as the problem of finding the stored prototype shape that is maximally similar to that in the image. Results are presented for silhouettes, trademarks, handwritten digits and the COIL dataset.
Results 1  10
of
66,123