Results 1  10
of
18,567
Ktheory for operator algebras
 Mathematical Sciences Research Institute Publications
, 1998
"... p. XII line5: since p. 12: I blew this simple formula: should be α = −〈ξ, η〉/〈η, η〉. p. 2 I.1.1.4: The RieszFischer Theorem is often stated this way today, but neither Riesz nor Fischer (who worked independently) phrased it in terms of completeness of the orthogonal system {e int}. If [a, b] is a ..."
Abstract

Cited by 558 (0 self)
 Add to MetaCart
space is not σfinite. p. 13: add after I.2.6.16: I.2.6.17. If X is a compact subset of C not containing 0, and k ∈ N, there is in general no bound on the norm of T −1 as T ranges over all operators with ‖T ‖ ≤ k and σ(T) ⊆ X. For example, let Sn ∈ L(l 2) be the truncated shift: Sn(α1, α2,...) = (0
Partial Functions
"... this article we prove some auxiliary theorems and schemes related to the articles: [1] and [2]. MML Identifier: PARTFUN1. WWW: http://mizar.org/JFM/Vol1/partfun1.html The articles [4], [6], [3], [5], [7], [8], and [1] provide the notation and terminology for this paper. We adopt the following rules ..."
Abstract

Cited by 492 (10 self)
 Add to MetaCart
rules: x, y, y 1 , y 2 , z, z 1 , z 2 denote sets, P , Q, X , X 0 , X 1 , X 2 , Y , Y 0 , Y 1 , Y 2 , V , Z denote sets, and C, D denote non empty sets. We now state three propositions: (1) If P ` [: X 1
The Dantzig selector: statistical estimation when p is much larger than n
, 2005
"... In many important statistical applications, the number of variables or parameters p is much larger than the number of observations n. Suppose then that we have observations y = Ax + z, where x ∈ R p is a parameter vector of interest, A is a data matrix with possibly far fewer rows than columns, n ≪ ..."
Abstract

Cited by 879 (14 self)
 Add to MetaCart
≪ p, and the zi’s are i.i.d. N(0, σ 2). Is it possible to estimate x reliably based on the noisy data y? To estimate x, we introduce a new estimator—we call the Dantzig selector—which is solution to the ℓ1regularization problem min ˜x∈R p ‖˜x‖ℓ1 subject to ‖A T r‖ℓ ∞ ≤ (1 + t −1) √ 2 log p · σ
Near Optimal Signal Recovery From Random Projections: Universal Encoding Strategies?
, 2004
"... Suppose we are given a vector f in RN. How many linear measurements do we need to make about f to be able to recover f to within precision ɛ in the Euclidean (ℓ2) metric? Or more exactly, suppose we are interested in a class F of such objects— discrete digital signals, images, etc; how many linear m ..."
Abstract

Cited by 1513 (20 self)
 Add to MetaCart
Suppose we are given a vector f in RN. How many linear measurements do we need to make about f to be able to recover f to within precision ɛ in the Euclidean (ℓ2) metric? Or more exactly, suppose we are interested in a class F of such objects— discrete digital signals, images, etc; how many linear
The irreducibility of the space of curves of given genus
 Publ. Math. IHES
, 1969
"... Fix an algebraically closed field k. Let Mg be the moduli space of curves of genus g over k. The main result of this note is that Mg is irreducible for every k. Of course, whether or not M s is irreducible depends only on the characteristic of k. When the characteristic s o, we can assume that k ~ ..."
Abstract

Cited by 506 (2 self)
 Add to MetaCart
from char. o to char. p provided that p> 2g qi. Unfortunately, attempts to extend this method to all p seem to get stuck on difficult questions of wild ramification. Nowadays, the Teichmtiller theory gives a thoroughly analytic but very profound insight into this irreducibility when kC. Our
Loopy belief propagation for approximate inference: An empirical study. In:
 Proceedings of Uncertainty in AI,
, 1999
"... Abstract Recently, researchers have demonstrated that "loopy belief propagation" the use of Pearl's polytree algorithm in a Bayesian network with loops can perform well in the context of errorcorrecting codes. The most dramatic instance of this is the near Shannonlimit performanc ..."
Abstract

Cited by 676 (15 self)
 Add to MetaCart
likelihood weighting 3.1 The PYRAMID network All nodes were binary and the conditional probabilities were represented by tablesentries in the conditional probability tables (CPTs) were chosen uniformly in the range (0, 1]. 3.2 The toyQMR network All nodes were binary and the conditional probabilities
Policy gradient methods for reinforcement learning with function approximation.
 In NIPS,
, 1999
"... Abstract Function approximation is essential to reinforcement learning, but the standard approach of approximating a value function and determining a policy from it has so far proven theoretically intractable. In this paper we explore an alternative approach in which the policy is explicitly repres ..."
Abstract

Cited by 439 (20 self)
 Add to MetaCart
;actorcritic" or policyiteration architectures (e.g., Policy Gradient Theorem We consider the standard reinforcement learning framework (see, e.g., Sutton and Barto, 1998), in which a learning agent interacts with a Markov decision process (MDP). The state, action, and reward at each time t ∈ {0, 1, 2
Renormalization group flows from holography  Supersymmetry and a ctheorem
 ADV THEOR. MATH. PHYS
, 1999
"... We obtain first order equations that determine a supersymmetric kink solution in fivedimensional N = 8 gauged supergravity. The kink interpolates between an exterior antide Sitter region with maximal supersymmetry and an interior antide Sitter region with one quarter of the maximal supersymmetry. ..."
Abstract

Cited by 294 (25 self)
 Add to MetaCart
sector of N = 2 gauge theories based on quiver diagrams. We consider more general kink geometries and construct a cfunction that is positive and monotonic if a weak energy condition holds in the bulk gravity theory. For evendimensional boundaries, the cfunction coincides with the trace anomaly
Results 1  10
of
18,567