Results 1  10
of
534,769
Integrating structured biological data by kernel maximum mean discrepancy
 IN ISMB
, 2006
"... Motivation: Many problems in data integration in bioinformatics can be posed as one common question: Are two sets of observations generated by the same distribution? We propose a kernelbased statistical test for this problem, based on the fact that two distributions are different if and only if the ..."
Abstract

Cited by 85 (20 self)
 Add to MetaCart
if there exists at least one function having different expectation on the two distributions. Consequently we use the maximum discrepancy between function means as the basis of a test statistic. The Maximum Mean Discrepancy (MMD) can take advantage of the kernel trick, which allows us to apply it not only
Integrating structured biological data by Kernel Maximum Mean Discrepancy
"... Motivation: Many problems in data integration in bioinformatics can be posed as one common question: Are two sets of observations generated by the same distribution? We propose a kernelbased statistical test for this problem, based on the fact that two distributions are different if and only if th ..."
Abstract
 Add to MetaCart
if there exists at least one function having different expectation on the two distributions. Consequently we use the maximum discrepancy between function means as the basis of a test statistic. The Maximum Mean Discrepancy (MMD) can take advantage of the kernel trick, which allows us to apply it not only
doi:10.1093/bioinformatics/btl242BIOINFORMATICS Integrating structured biological data by Kernel Maximum Mean Discrepancy
"... Motivation: Many problems in data integration in bioinformatics can be posed as one common question: Are two sets of observations generated by the same distribution? We propose a kernelbased statistical test for this problem, based on the fact that two distributions aredifferent ifandonly if theree ..."
Abstract
 Add to MetaCart
if thereexistsat leastonefunctionhavingdifferent expectationonthetwodistributions.Consequentlyweusethemaximum discrepancy between function means as the basis of a test statistic. The Maximum Mean Discrepancy (MMD) can take advantage of the kernel trick, which allows us to apply it not only to vectors, but strings
The xKernel: An Architecture for Implementing Network Protocols
 IEEE Transactions on Software Engineering
, 1991
"... This paper describes a new operating system kernel, called the xkernel, that provides an explicit architecture for constructing and composing network protocols. Our experience implementing and evaluating several protocols in the xkernel shows that this architecture is both general enough to acc ..."
Abstract

Cited by 663 (21 self)
 Add to MetaCart
This paper describes a new operating system kernel, called the xkernel, that provides an explicit architecture for constructing and composing network protocols. Our experience implementing and evaluating several protocols in the xkernel shows that this architecture is both general enough
Nonlinear component analysis as a kernel eigenvalue problem

, 1996
"... We describe a new method for performing a nonlinear form of Principal Component Analysis. By the use of integral operator kernel functions, we can efficiently compute principal components in highdimensional feature spaces, related to input space by some nonlinear map; for instance the space of all ..."
Abstract

Cited by 1554 (85 self)
 Add to MetaCart
We describe a new method for performing a nonlinear form of Principal Component Analysis. By the use of integral operator kernel functions, we can efficiently compute principal components in highdimensional feature spaces, related to input space by some nonlinear map; for instance the space of all
Maximum Likelihood Phylogenetic Estimation from DNA Sequences with Variable Rates over Sites: Approximate Methods
 J. Mol. Evol
, 1994
"... Two approximate methods are proposed for maximum likelihood phylogenetic estimation, which allow variable rates of substitution across nucleotide sites. Three data sets with quite different characteristics were analyzed to examine empirically the performance of these methods. The first, called ..."
Abstract

Cited by 540 (28 self)
 Add to MetaCart
Two approximate methods are proposed for maximum likelihood phylogenetic estimation, which allow variable rates of substitution across nucleotide sites. Three data sets with quite different characteristics were analyzed to examine empirically the performance of these methods. The first, called
Dictionary of protein secondary structure: pattern recognition of hydrogenbonded and geometrical features
 Biopolymers
, 1983
"... structure ..."
Powerlaw distributions in empirical data
 ISSN 00361445. doi: 10.1137/ 070710111. URL http://dx.doi.org/10.1137/070710111
, 2009
"... Powerlaw distributions occur in many situations of scientific interest and have significant consequences for our understanding of natural and manmade phenomena. Unfortunately, the empirical detection and characterization of power laws is made difficult by the large fluctuations that occur in the t ..."
Abstract

Cited by 589 (7 self)
 Add to MetaCart
estimates for powerlaw data, based on maximum likelihood methods and the KolmogorovSmirnov statistic. We also show how to tell whether the data follow a powerlaw distribution at all, defining quantitative measures that indicate when the power law is a reasonable fit to the data and when it is not. We
Large margin methods for structured and interdependent output variables
 JOURNAL OF MACHINE LEARNING RESEARCH
, 2005
"... Learning general functional dependencies between arbitrary input and output spaces is one of the key challenges in computational intelligence. While recent progress in machine learning has mainly focused on designing flexible and powerful input representations, this paper addresses the complementary ..."
Abstract

Cited by 612 (12 self)
 Add to MetaCart
the complementary issue of designing classification algorithms that can deal with more complex outputs, such as trees, sequences, or sets. More generally, we consider problems involving multiple dependent output variables, structured output spaces, and classification problems with class attributes. In order
Results 1  10
of
534,769