Results 1 - 10
of
991,509
Integrating microarray data by consensus clustering
- In Proceedings of International Conference on Tools with Artificial Intelligence (ICTAI
, 2003
"... With the exploding volume of microarray experiments comes increasing interest in mining repositories of such data. Meaningfully combining results from varied experiments on an equal basis is a challenging task. Here we propose a general method for integrating heterogeneous data sets based on the con ..."
Abstract
-
Cited by 42 (3 self)
- Add to MetaCart
on the consensus clustering formalism. Our method analyzes source-specific clusterings and identifies a consensus set-partition which is as close as possible to all of them. We develop a general criterion to assess the potential benefit of integrating multiple heterogeneous data sets, i.e. whether the integrated
International Journal on Artificial Intelligence Tools c ○ World Scientific Publishing Company INTEGRATING MICROARRAY DATA BY CONSENSUS CLUSTERING
"... With the exploding volume of microarray experiments comes increasing interest in mining repositories of such data. Meaningfully combining results from varied experiments on an equal basis is a challenging task. Here we propose a general method for integrating heterogeneous data sets based on the con ..."
Abstract
- Add to MetaCart
on the consensus clustering formalism. Our method analyzes source-specific clusterings and identifies a consensus set-partition which is as close as possible to all of them. We develop a general criterion to assess the potential benefit of integrating multiple heterogeneous data sets, i.e. whether the integrated
Limma: linear models for microarray data
- Bioinformatics and Computational Biology Solutions using R and Bioconductor
, 2005
"... This free open-source software implements academic research by the authors and co-workers. If you use it, please support the project by citing the appropriate journal articles listed in Section 2.1.Contents ..."
Abstract
-
Cited by 759 (13 self)
- Add to MetaCart
This free open-source software implements academic research by the authors and co-workers. If you use it, please support the project by citing the appropriate journal articles listed in Section 2.1.Contents
Knowledge-based Analysis of Microarray Gene Expression Data By Using Support Vector Machines
, 2000
"... We introduce a method of functionally classifying genes by using gene expression data from DNA microarray hybridization experiments. The method is based on the theory of support vector machines (SVMs). SVMs are considered a supervised computer learning method because they exploit prior knowledge of ..."
Abstract
-
Cited by 514 (8 self)
- Add to MetaCart
We introduce a method of functionally classifying genes by using gene expression data from DNA microarray hybridization experiments. The method is based on the theory of support vector machines (SVMs). SVMs are considered a supervised computer learning method because they exploit prior knowledge
A Bayesian Framework for the Analysis of Microarray Expression Data: Regularized t-Test and Statistical Inferences of Gene Changes
- Bioinformatics
, 2001
"... Motivation: DNA microarrays are now capable of providing genome-wide patterns of gene expression across many different conditions. The first level of analysis of these patterns requires determining whether observed differences in expression are significant or not. Current methods are unsatisfactory ..."
Abstract
-
Cited by 485 (6 self)
- Add to MetaCart
due to the lack of a systematic framework that can accommodate noise, variability, and low replication often typical of microarray data. Results: We develop a Bayesian probabilistic framework for microarray data analysis. At the simplest level, we model log-expression values by independent normal
Empirical Bayes Analysis of a Microarray Experiment
- Journal of the American Statistical Association
, 2001
"... Microarrays are a novel technology that facilitates the simultaneous measurement of thousands of gene expression levels. A typical microarray experiment can produce millions of data points, raising serious problems of data reduction, and simultaneous inference. We consider one such experiment in whi ..."
Abstract
-
Cited by 488 (19 self)
- Add to MetaCart
Microarrays are a novel technology that facilitates the simultaneous measurement of thousands of gene expression levels. A typical microarray experiment can produce millions of data points, raising serious problems of data reduction, and simultaneous inference. We consider one such experiment
Clustering by passing messages between data points
- Science
, 2007
"... Clustering data by identifying a subset of representative examples is important for processing sensory signals and detecting patterns in data. Such “exemplars ” can be found by randomly choosing an initial subset of data points and then iteratively refining it, but this works well only if that initi ..."
Abstract
-
Cited by 688 (9 self)
- Add to MetaCart
. We used affinity propagation to cluster images of faces, detect genes in microarray data, identify representative sentences in this manuscript, and identify cities that are efficiently accessed by airline travel. Affinity propagation found clusters with much lower error than other methods, and it did
Model-Based Clustering, Discriminant Analysis, and Density Estimation
- JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
, 2000
"... Cluster analysis is the automated search for groups of related observations in a data set. Most clustering done in practice is based largely on heuristic but intuitively reasonable procedures and most clustering methods available in commercial software are also of this type. However, there is little ..."
Abstract
-
Cited by 557 (28 self)
- Add to MetaCart
Cluster analysis is the automated search for groups of related observations in a data set. Most clustering done in practice is based largely on heuristic but intuitively reasonable procedures and most clustering methods available in commercial software are also of this type. However
Support Vector Machine Classification and Validation of Cancer Tissue Samples Using Microarray Expression Data
, 2000
"... Motivation: DNA microarray experiments generating thousands of gene expression measurements, are being used to gather information from tissue and cell samples regarding gene expression differences that will be useful in diagnosing disease. We have developed a new method to analyse this kind of data ..."
Abstract
-
Cited by 566 (1 self)
- Add to MetaCart
Motivation: DNA microarray experiments generating thousands of gene expression measurements, are being used to gather information from tissue and cell samples regarding gene expression differences that will be useful in diagnosing disease. We have developed a new method to analyse this kind of data
Missing value estimation methods for DNA microarrays
, 2001
"... Motivation: Gene expression microarray experiments can generate data sets with multiple missing expression values. Unfortunately, many algorithms for gene expression analysis require a complete matrix of gene array values as input. For example, methods such as hierarchical clustering and K-means clu ..."
Abstract
-
Cited by 476 (26 self)
- Add to MetaCart
Motivation: Gene expression microarray experiments can generate data sets with multiple missing expression values. Unfortunately, many algorithms for gene expression analysis require a complete matrix of gene array values as input. For example, methods such as hierarchical clustering and K
Results 1 - 10
of
991,509