Results 1  10
of
27,631
Informatics at UC Irvine
"... Computer Science, as a single discipline, can no longer speak to the broad relevance of digital technologies in ..."
Abstract
 Add to MetaCart
Computer Science, as a single discipline, can no longer speak to the broad relevance of digital technologies in
Hypertext Transfer Protocol  HTTP/1.1
, 1996
"... The Hypertext Transfer Protocol (HTTP) is an applicationlevel protocol for distributed, collaborative, hypermedia information systems. It is a generic, stateless, objectoriented protocol which can be used for many tasks, such as name servers and distributed object management systems, through exten ..."
Abstract

Cited by 891 (27 self)
 Add to MetaCart
referred to as "HTTP/1.1". HTTP Working Group R. Fielding, UC Irvine INTERNETDRAFT H. Frystyk, MIT/LCS <draftietfhttpv11spec04> T. BernersLee, MIT/LCS J. Gettys, DEC J. C. Mogul, DEC Expires October 3, 1996 June 3, Fielding, Frystyk, BernersLee, Gettys and Mogul [Page 3] Table
Irrelevant Features and the Subset Selection Problem
 MACHINE LEARNING: PROCEEDINGS OF THE ELEVENTH INTERNATIONAL
, 1994
"... We address the problem of finding a subset of features that allows a supervised induction algorithm to induce small highaccuracy concepts. We examine notions of relevance and irrelevance, and show that the definitions used in the machine learning literature do not adequately partition the features ..."
Abstract

Cited by 741 (26 self)
 Add to MetaCart
We address the problem of finding a subset of features that allows a supervised induction algorithm to induce small highaccuracy concepts. We examine notions of relevance and irrelevance, and show that the definitions used in the machine learning literature do not adequately partition the features into useful categories of relevance. We present definitions for irrelevance and for two degrees of relevance. These definitions improve our understanding of the behavior of previous subset selection algorithms, and help define the subset of features that should be sought. The features selected should depend not only on the features and the target concept, but also on the induction algorithm. We describe a method for feature subset selection using crossvalidation that is applicable to any induction algorithm, and discuss experiments conducted with ID3 and C4.5 on artificial and real datasets.
Distance Metric Learning, With Application To Clustering With SideInformation
 ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 15
, 2003
"... Many algorithms rely critically on being given a good metric over their inputs. For instance, data can often be clustered in many "plausible" ways, and if a clustering algorithm such as Kmeans initially fails to find one that is meaningful to a user, the only recourse may be for the us ..."
Abstract

Cited by 799 (14 self)
 Add to MetaCart
Many algorithms rely critically on being given a good metric over their inputs. For instance, data can often be clustered in many "plausible" ways, and if a clustering algorithm such as Kmeans initially fails to find one that is meaningful to a user, the only recourse may be for the user to manually tweak the metric until sufficiently good clusters are found. For these and other applications requiring good metrics, it is desirable that we provide a more systematic way for users to indicate what they consider "similar." For instance, we may ask them to provide examples. In this paper, we present an algorithm that, given examples of similar (and, if desired, dissimilar) pairs of points in R , learns a distance metric over R that respects these relationships. Our method is based on posing metric learning as a convex optimization problem, which allows us to give efficient, localoptimafree algorithms. We also demonstrate empirically that the learned metrics can be used to significantly improve clustering performance.
Fast Effective Rule Induction
, 1995
"... Many existing rule learning systems are computationally expensive on large noisy datasets. In this paper we evaluate the recentlyproposed rule learning algorithm IREP on a large and diverse collection of benchmark problems. We show that while IREP is extremely efficient, it frequently gives error r ..."
Abstract

Cited by 1257 (21 self)
 Add to MetaCart
Many existing rule learning systems are computationally expensive on large noisy datasets. In this paper we evaluate the recentlyproposed rule learning algorithm IREP on a large and diverse collection of benchmark problems. We show that while IREP is extremely efficient, it frequently gives error rates higher than those of C4.5 and C4.5rules. We then propose a number of modifications resulting in an algorithm RIPPERk that is very competitive with C4.5rules with respect to error rates, but much more efficient on large samples. RIPPERk obtains error rates lower than or equivalent to C4.5rules on 22 of 37 benchmark problems, scales nearly linearly with the number of training examples, and can efficiently process noisy datasets containing hundreds of thousands of examples.
Modern Information Retrieval
, 1999
"... Information retrieval (IR) has changed considerably in the last years with the expansion of the Web (World Wide Web) and the advent of modern and inexpensive graphical user interfaces and mass storage devices. As a result, traditional IR textbooks have become quite outofdate which has led to the i ..."
Abstract

Cited by 3155 (28 self)
 Add to MetaCart
Information retrieval (IR) has changed considerably in the last years with the expansion of the Web (World Wide Web) and the advent of modern and inexpensive graphical user interfaces and mass storage devices. As a result, traditional IR textbooks have become quite outofdate which has led to the introduction of new IR books recently. Nevertheless, we believe that there is still great need of a book that approaches the field in a rigorous and complete way from a computerscience perspective (in opposition to a usercentered perspective). This book is an effort to partially fulfill this gap and should be useful for a first course on information retrieval as well as for a graduate course on the topic. The book
Wrappers for Feature Subset Selection
 AIJ SPECIAL ISSUE ON RELEVANCE
, 1997
"... In the feature subset selection problem, a learning algorithm is faced with the problem of selecting a relevant subset of features upon which to focus its attention, while ignoring the rest. To achieve the best possible performance with a particular learning algorithm on a particular training set, a ..."
Abstract

Cited by 1522 (3 self)
 Add to MetaCart
In the feature subset selection problem, a learning algorithm is faced with the problem of selecting a relevant subset of features upon which to focus its attention, while ignoring the rest. To achieve the best possible performance with a particular learning algorithm on a particular training set, a feature subset selection method should consider how the algorithm and the training set interact. We explore the relation between optimal feature subset selection and relevance. Our wrapper method searches for an optimal feature subset tailored to a particular algorithm and a domain. We study the strengths and weaknesses of the wrapper approach andshow a series of improved designs. We compare the wrapper approach to induction without feature subset selection and to Relief, a filter approach to feature subset selection. Significant improvement in accuracy is achieved for some datasets for the two families of induction algorithms used: decision trees and NaiveBayes.
Mining Frequent Patterns without Candidate Generation: A FrequentPattern Tree Approach
 DATA MINING AND KNOWLEDGE DISCOVERY
, 2004
"... Mining frequent patterns in transaction databases, timeseries databases, and many other kinds of databases has been studied popularly in data mining research. Most of the previous studies adopt an Apriorilike candidate set generationandtest approach. However, candidate set generation is still co ..."
Abstract

Cited by 1700 (64 self)
 Add to MetaCart
Mining frequent patterns in transaction databases, timeseries databases, and many other kinds of databases has been studied popularly in data mining research. Most of the previous studies adopt an Apriorilike candidate set generationandtest approach. However, candidate set generation is still costly, especially when there exist a large number of patterns and/or long patterns. In this study, we propose a novel
frequentpattern tree
(FPtree) structure, which is an extended prefixtree
structure for storing compressed, crucial information about frequent patterns, and develop an efficient FPtree
based mining method, FPgrowth, for mining the complete set of frequent patterns by pattern fragment growth.
Efficiency of mining is achieved with three techniques: (1) a large database is compressed into a condensed,
smaller data structure, FPtree which avoids costly, repeated database scans, (2) our FPtreebased mining adopts
a patternfragment growth method to avoid the costly generation of a large number of candidate sets, and (3) a
partitioningbased, divideandconquer method is used to decompose the mining task into a set of smaller tasks for
mining confined patterns in conditional databases, which dramatically reduces the search space. Our performance
study shows that the FPgrowth method is efficient and scalable for mining both long and short frequent patterns,
and is about an order of magnitude faster than the Apriori algorithm and also faster than some recently reported
new frequentpattern mining methods
Additive Logistic Regression: a Statistical View of Boosting
 Annals of Statistics
, 1998
"... Boosting (Freund & Schapire 1996, Schapire & Singer 1998) is one of the most important recent developments in classification methodology. The performance of many classification algorithms can often be dramatically improved by sequentially applying them to reweighted versions of the input dat ..."
Abstract

Cited by 1719 (25 self)
 Add to MetaCart
Boosting (Freund & Schapire 1996, Schapire & Singer 1998) is one of the most important recent developments in classification methodology. The performance of many classification algorithms can often be dramatically improved by sequentially applying them to reweighted versions of the input data, and taking a weighted majority vote of the sequence of classifiers thereby produced. We show that this seemingly mysterious phenomenon can be understood in terms of well known statistical principles, namely additive modeling and maximum likelihood. For the twoclass problem, boosting can be viewed as an approximation to additive modeling on the logistic scale using maximum Bernoulli likelihood as a criterion. We develop more direct approximations and show that they exhibit nearly identical results to boosting. Direct multiclass generalizations based on multinomial likelihood are derived that exhibit performance comparable to other recently proposed multiclass generalizations of boosting in most...
An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants
 MACHINE LEARNING
, 1999
"... Methods for voting classification algorithms, such as Bagging and AdaBoost, have been shown to be very successful in improving the accuracy of certain classifiers for artificial and realworld datasets. We review these algorithms and describe a large empirical study comparing several variants in co ..."
Abstract

Cited by 695 (2 self)
 Add to MetaCart
Methods for voting classification algorithms, such as Bagging and AdaBoost, have been shown to be very successful in improving the accuracy of certain classifiers for artificial and realworld datasets. We review these algorithms and describe a large empirical study comparing several variants in conjunction with a decision tree inducer (three variants) and a NaiveBayes inducer.
The purpose of the study is to improve our understanding of why and
when these algorithms, which use perturbation, reweighting, and
combination techniques, affect classification error. We provide a
bias and variance decomposition of the error to show how different
methods and variants influence these two terms. This allowed us to
determine that Bagging reduced variance of unstable methods, while
boosting methods (AdaBoost and Arcx4) reduced both the bias and
variance of unstable methods but increased the variance for NaiveBayes,
which was very stable. We observed that Arcx4 behaves differently
than AdaBoost if reweighting is used instead of resampling,
indicating a fundamental difference. Voting variants, some of which
are introduced in this paper, include: pruning versus no pruning,
use of probabilistic estimates, weight perturbations (Wagging), and
backfitting of data. We found that Bagging improves when
probabilistic estimates in conjunction with nopruning are used, as
well as when the data was backfit. We measure tree sizes and show
an interesting positive correlation between the increase in the
average tree size in AdaBoost trials and its success in reducing the
error. We compare the meansquared error of voting methods to
nonvoting methods and show that the voting methods lead to large
and significant reductions in the meansquared errors. Practical
problems that arise in implementing boosting algorithms are
explored, including numerical instabilities and underflows. We use
scatterplots that graphically show how AdaBoost reweights instances,
emphasizing not only "hard" areas but also outliers and noise.
Results 1  10
of
27,631