Results 11  20
of
505,721
Loopy Belief Propagation for Approximate Inference: An Empirical Study
 In Proceedings of Uncertainty in AI
, 1999
"... Recently, researchers have demonstrated that "loopy belief propagation"  the use of Pearl's polytree algorithm in a Bayesian network with loops  can perform well in the context of errorcorrecting codes. The most dramatic instance of this is the near Shannonlimit performa ..."
Abstract

Cited by 680 (18 self)
 Add to MetaCart
inference scheme in a more general setting? We compare the marginals computed using loopy propagation to the exact ones in four Bayesian network architectures, including two realworld networks: ALARM and QMR. We find that the loopy beliefs often converge and when they do, they give a good
Stock Market Prices Do Not Follow Random Walks: Evidence from a Simple Specification Test
 REVIEW OF FINANCIAL STUDIES
, 1988
"... In this article we test the random walk hypothesis for weekly stock market returns by comparing variance estimators derived from data sampled at different frequencies. The random walk model is strongly rejected for the entire sample period (19621985) and for all subperiod for a variety of aggrega ..."
Abstract

Cited by 492 (18 self)
 Add to MetaCart
In this article we test the random walk hypothesis for weekly stock market returns by comparing variance estimators derived from data sampled at different frequencies. The random walk model is strongly rejected for the entire sample period (19621985) and for all subperiod for a variety
Transductive Inference for Text Classification using Support Vector Machines
, 1999
"... This paper introduces Transductive Support Vector Machines (TSVMs) for text classification. While regular Support Vector Machines (SVMs) try to induce a general decision function for a learning task, Transductive Support Vector Machines take into account a particular test set and try to minimiz ..."
Abstract

Cited by 887 (4 self)
 Add to MetaCart
This paper introduces Transductive Support Vector Machines (TSVMs) for text classification. While regular Support Vector Machines (SVMs) try to induce a general decision function for a learning task, Transductive Support Vector Machines take into account a particular test set and try to minimize misclassifications of just those particular examples. The paper presents an analysis of why TSVMs are well suited for text classification. These theoretical findings are supported by experiments on three test collections. The experiments show substantial improvements over inductive methods, especially for small training sets, cutting the number of labeled training examples down to a twentieth on some tasks. This work also proposes an algorithm for training TSVMs efficiently, handling 10,000 examples and more.
Searching Distributed Collections With Inference Networks
 IN PROCEEDINGS OF THE 18TH ANNUAL INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL
, 1995
"... The use of information retrieval systems in networked environments raises a new set of issues that have received little attention. These issues include ranking document collections for relevance to a query, selecting the best set of collections from a ranked list, and merging the document rankings t ..."
Abstract

Cited by 469 (36 self)
 Add to MetaCart
that are returned from a set of collections. This paper describes methods of addressing each issue in the inference network model, discusses their implementation in the INQUERY system, and presents experimental results demonstrating their effectiveness.
A Critical Point For Random Graphs With A Given Degree Sequence
, 2000
"... Given a sequence of nonnegative real numbers 0 ; 1 ; : : : which sum to 1, we consider random graphs having approximately i n vertices of degree i. Essentially, we show that if P i(i \Gamma 2) i ? 0 then such graphs almost surely have a giant component, while if P i(i \Gamma 2) i ! 0 the ..."
Abstract

Cited by 511 (8 self)
 Add to MetaCart
Given a sequence of nonnegative real numbers 0 ; 1 ; : : : which sum to 1, we consider random graphs having approximately i n vertices of degree i. Essentially, we show that if P i(i \Gamma 2) i ? 0 then such graphs almost surely have a giant component, while if P i(i \Gamma 2) i ! 0
"GrabCut”  interactive foreground extraction using iterated graph cuts
 ACM TRANS. GRAPH
, 2004
"... The problem of efficient, interactive foreground/background segmentation in still images is of great practical importance in image editing. Classical image segmentation tools use either texture (colour) information, e.g. Magic Wand, or edge (contrast) information, e.g. Intelligent Scissors. Recently ..."
Abstract

Cited by 1140 (36 self)
 Add to MetaCart
. Recently, an approach based on optimization by graphcut has been developed which successfully combines both types of information. In this paper we extend the graphcut approach in three respects. First, we have developed a more powerful, iterative version of the optimisation. Secondly, the power
A Bayesian Framework for the Analysis of Microarray Expression Data: Regularized tTest and Statistical Inferences of Gene Changes
 Bioinformatics
, 2001
"... Motivation: DNA microarrays are now capable of providing genomewide patterns of gene expression across many different conditions. The first level of analysis of these patterns requires determining whether observed differences in expression are significant or not. Current methods are unsatisfactory ..."
Abstract

Cited by 485 (6 self)
 Add to MetaCart
with neighboring genes. An additional hyperparameter, inversely related to the number of empirical observations, determines the strength of the background variance. Simulations show that these point estimates, combined with a ttest, provide a systematic inference approach that compares favorably with simple t
A Bayesian method for the induction of probabilistic networks from data
 MACHINE LEARNING
, 1992
"... This paper presents a Bayesian method for constructing probabilistic networks from databases. In particular, we focus on constructing Bayesian belief networks. Potential applications include computerassisted hypothesis testing, automated scientific discovery, and automated construction of probabili ..."
Abstract

Cited by 1381 (32 self)
 Add to MetaCart
This paper presents a Bayesian method for constructing probabilistic networks from databases. In particular, we focus on constructing Bayesian belief networks. Potential applications include computerassisted hypothesis testing, automated scientific discovery, and automated construction
Inferring Internet DenialofService Activity
 In Proceedings of the 10th Usenix Security Symposium
, 2001
"... In this paper, we seek to answer a simple question: "How prevalent are denialofservice attacks in the Internet today?". Our motivation is to understand quantitatively the nature of the current threat as well as to enable longerterm analyses of trends and recurring patterns of attacks. We ..."
Abstract

Cited by 451 (13 self)
 Add to MetaCart
observe more than 12,000 attacks against more than 5,000 distinct targets, ranging from well known ecommerce companies such as Amazon and Hotmail to small foreign ISPs and dialup connections. We believe that our work is the only publically available data quantifying denialofservice activity
Results 11  20
of
505,721