Results 1  10
of
1,207,512
Incremental methods for computing bounds in partially observable Markov decision processes
 In Proceedings of the Fourteenth National Conference on Artificial Intelligence
, 1997
"... Partially observable Markov decision processes (POMDPs) allow one to model complex dynamic decision or control problems that include both action outcome uncertainty and imperfect observability. The control problem is formulated as a dynamic optimization problem with a value function combining costs ..."
Abstract

Cited by 40 (1 self)
 Add to MetaCart
Partially observable Markov decision processes (POMDPs) allow one to model complex dynamic decision or control problems that include both action outcome uncertainty and imperfect observability. The control problem is formulated as a dynamic optimization problem with a value function combining costs
unknown title
"... Incremental methods for computing bounds in partially observable Markov decision processes Partially observable Markov decision processes (POMDPs) allow one to model complex dynamic decision or control problems that include both action outcome uncertainty and imperfect observability. The control pro ..."
Abstract
 Add to MetaCart
Incremental methods for computing bounds in partially observable Markov decision processes Partially observable Markov decision processes (POMDPs) allow one to model complex dynamic decision or control problems that include both action outcome uncertainty and imperfect observability. The control
DecisionTheoretic Planning: Structural Assumptions and Computational Leverage
 JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH
, 1999
"... Planning under uncertainty is a central problem in the study of automated sequential decision making, and has been addressed by researchers in many different fields, including AI planning, decision analysis, operations research, control theory and economics. While the assumptions and perspectives ..."
Abstract

Cited by 510 (4 self)
 Add to MetaCart
and perspectives adopted in these areas often differ in substantial ways, many planning problems of interest to researchers in these fields can be modeled as Markov decision processes (MDPs) and analyzed using the techniques of decision theory. This paper presents an overview and synthesis of MDP
Markov Random Field Models in Computer Vision
, 1994
"... . A variety of computer vision problems can be optimally posed as Bayesian labeling in which the solution of a problem is defined as the maximum a posteriori (MAP) probability estimate of the true labeling. The posterior probability is usually derived from a prior model and a likelihood model. The l ..."
Abstract

Cited by 515 (18 self)
 Add to MetaCart
. The latter relates to how data is observed and is problem domain dependent. The former depends on how various prior constraints are expressed. Markov Random Field Models (MRF) theory is a tool to encode contextual constraints into the prior probability. This paper presents a unified approach for MRF modeling
Reversible jump Markov chain Monte Carlo computation and Bayesian model determination
 Biometrika
, 1995
"... Markov chain Monte Carlo methods for Bayesian computation have until recently been restricted to problems where the joint distribution of all variables has a density with respect to some xed standard underlying measure. They have therefore not been available for application to Bayesian model determi ..."
Abstract

Cited by 1330 (24 self)
 Add to MetaCart
Markov chain Monte Carlo methods for Bayesian computation have until recently been restricted to problems where the joint distribution of all variables has a density with respect to some xed standard underlying measure. They have therefore not been available for application to Bayesian model
Maximum entropy markov models for information extraction and segmentation
, 2000
"... Hidden Markov models (HMMs) are a powerful probabilistic tool for modeling sequential data, and have been applied with success to many textrelated tasks, such as partofspeech tagging, text segmentation and information extraction. In these cases, the observations are usually modeled as multinomial ..."
Abstract

Cited by 554 (18 self)
 Add to MetaCart
Hidden Markov models (HMMs) are a powerful probabilistic tool for modeling sequential data, and have been applied with success to many textrelated tasks, such as partofspeech tagging, text segmentation and information extraction. In these cases, the observations are usually modeled
Exact Sampling with Coupled Markov Chains and Applications to Statistical Mechanics
, 1996
"... For many applications it is useful to sample from a finite set of objects in accordance with some particular distribution. One approach is to run an ergodic (i.e., irreducible aperiodic) Markov chain whose stationary distribution is the desired distribution on this set; after the Markov chain has ..."
Abstract

Cited by 548 (13 self)
 Add to MetaCart
For many applications it is useful to sample from a finite set of objects in accordance with some particular distribution. One approach is to run an ergodic (i.e., irreducible aperiodic) Markov chain whose stationary distribution is the desired distribution on this set; after the Markov chain
Approximate Signal Processing
, 1997
"... It is increasingly important to structure signal processing algorithms and systems to allow for trading off between the accuracy of results and the utilization of resources in their implementation. In any particular context, there are typically a variety of heuristic approaches to managing these tra ..."
Abstract

Cited by 516 (2 self)
 Add to MetaCart
these tradeoffs. One of the objectives of this paper is to suggest that there is the potential for developing a more formal approach, including utilizing current research in Computer Science on Approximate Processing and one of its central concepts, Incremental Refinement. Toward this end, we first summarize a
Induction of Decision Trees
 MACH. LEARN
, 1986
"... The technology for building knowledgebased systems by inductive inference from examples has been demonstrated successfully in several practical applications. This paper summarizes an approach to synthesizing decision trees that has been used in a variety of systems, and it describes one such syste ..."
Abstract

Cited by 4303 (4 self)
 Add to MetaCart
The technology for building knowledgebased systems by inductive inference from examples has been demonstrated successfully in several practical applications. This paper summarizes an approach to synthesizing decision trees that has been used in a variety of systems, and it describes one
Results 1  10
of
1,207,512