Results 1  10
of
25,308
KodairaSpencer theory of gravity and exact results for quantum string amplitudes
 Commun. Math. Phys
, 1994
"... We develop techniques to compute higher loop string amplitudes for twisted N = 2 theories with ĉ = 3 (i.e. the critical case). An important ingredient is the discovery of an anomaly at every genus in decoupling of BRST trivial states, captured to all orders by a master anomaly equation. In a particu ..."
Abstract

Cited by 545 (60 self)
 Add to MetaCart
We develop techniques to compute higher loop string amplitudes for twisted N = 2 theories with ĉ = 3 (i.e. the critical case). An important ingredient is the discovery of an anomaly at every genus in decoupling of BRST trivial states, captured to all orders by a master anomaly equation. In a particular realization of the N = 2 theories, the resulting string field theory is equivalent to a topological theory in six dimensions, the Kodaira– Spencer theory, which may be viewed as the closed string analog of the Chern–Simon theory. Using the mirror map this leads to computation of the ‘number ’ of holomorphic curves of higher genus curves in Calabi–Yau manifolds. It is shown that topological amplitudes can also be reinterpreted as computing corrections to superpotential terms appearing in the effective 4d theory resulting from compactification of standard 10d superstrings on the corresponding N = 2 theory. Relations with c = 1 strings are also pointed out.
Quantum field theory on noncommutative spaces
"... A pedagogical and selfcontained introduction to noncommutative quantum field theory is presented, with emphasis on those properties that are intimately tied to string theory and gravity. Topics covered include the WeylWigner correspondence, noncommutative Feynman diagrams, UV/IR mixing, noncommuta ..."
Abstract

Cited by 397 (26 self)
 Add to MetaCart
A pedagogical and selfcontained introduction to noncommutative quantum field theory is presented, with emphasis on those properties that are intimately tied to string theory and gravity. Topics covered include the WeylWigner correspondence, noncommutative Feynman diagrams, UV/IR mixing
DecisionTheoretic Planning: Structural Assumptions and Computational Leverage
 JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH
, 1999
"... Planning under uncertainty is a central problem in the study of automated sequential decision making, and has been addressed by researchers in many different fields, including AI planning, decision analysis, operations research, control theory and economics. While the assumptions and perspectives ..."
Abstract

Cited by 510 (4 self)
 Add to MetaCart
Planning under uncertainty is a central problem in the study of automated sequential decision making, and has been addressed by researchers in many different fields, including AI planning, decision analysis, operations research, control theory and economics. While the assumptions
String theory and noncommutative geometry
 JHEP
, 1999
"... We extend earlier ideas about the appearance of noncommutative geometry in string theory with a nonzero Bfield. We identify a limit in which the entire string dynamics is described by a minimally coupled (supersymmetric) gauge theory on a noncommutative space, and discuss the corrections away from ..."
Abstract

Cited by 801 (8 self)
 Add to MetaCart
counterpart. We obtain a new perspective on noncommutative gauge theory on a torus, its Tduality, and Morita equivalence. We also discuss the D0/D4 system, the relation to Mtheory in DLCQ, and a possible noncommutative version of the sixdimensional (2, 0) theory. 8/99
From Sparse Solutions of Systems of Equations to Sparse Modeling of Signals and Images
, 2007
"... A fullrank matrix A ∈ IR n×m with n < m generates an underdetermined system of linear equations Ax = b having infinitely many solutions. Suppose we seek the sparsest solution, i.e., the one with the fewest nonzero entries: can it ever be unique? If so, when? As optimization of sparsity is combin ..."
Abstract

Cited by 423 (37 self)
 Add to MetaCart
A fullrank matrix A ∈ IR n×m with n < m generates an underdetermined system of linear equations Ax = b having infinitely many solutions. Suppose we seek the sparsest solution, i.e., the one with the fewest nonzero entries: can it ever be unique? If so, when? As optimization of sparsity
Quantum cryptography
 Rev. Mod. Phys
, 2002
"... Quantum cryptography could well be the first application of quantum mechanics at the individual quanta level. The very fast progress in both theory and experiments over the recent years are reviewed, with emphasis on open questions and technological issues. Contents I ..."
Abstract

Cited by 182 (6 self)
 Add to MetaCart
Quantum cryptography could well be the first application of quantum mechanics at the individual quanta level. The very fast progress in both theory and experiments over the recent years are reviewed, with emphasis on open questions and technological issues. Contents I
The string dual of a confining fourdimensional gauge theory
, 2000
"... We study N = 1 gauge theories obtained by adding finite mass terms to N = 4 YangMills theory. The Maldacena dual is nonsingular: in each of the many vacua, there is an extended brane source, arising from Myers’ dielectric effect. The source consists of one or more (p,q) 5branes. In particular, the ..."
Abstract

Cited by 359 (8 self)
 Add to MetaCart
, the confining vacuum contains an NS5brane; the confining flux tube is a fundamental string bound to the 5brane. The system admits a simple quantitative description as a perturbation of a state on the N = 4 Coulomb branch. Various nonperturbative phenomena, including flux tubes, baryon vertices, domain walls
Results 1  10
of
25,308