Results 1  10
of
649,695
Lower Bounds for Shellsort
 In Proceedings of the 33rd Annual IEEE Symposium on Foundations of Computer Science
, 1997
"... We show lower bounds on the worstcase complexity of Shellsort. In particular, we give a fairly simple proof of an \Omega\Gamma n lg 2 n=(lg lg n) 2 ) lower bound for the size of Shellsort sorting networks, for arbitrary increment sequences. We also show an identical lower bound for the running ..."
Abstract

Cited by 14 (5 self)
 Add to MetaCart
We show lower bounds on the worstcase complexity of Shellsort. In particular, we give a fairly simple proof of an \Omega\Gamma n lg 2 n=(lg lg n) 2 ) lower bound for the size of Shellsort sorting networks, for arbitrary increment sequences. We also show an identical lower bound for the running
Theoretical improvements in algorithmic efficiency for network flow problems

, 1972
"... This paper presents new algorithms for the maximum flow problem, the Hitchcock transportation problem, and the general minimumcost flow problem. Upper bounds on ... the numbers of steps in these algorithms are derived, and are shown to compale favorably with upper bounds on the numbers of steps req ..."
Abstract

Cited by 565 (0 self)
 Add to MetaCart
This paper presents new algorithms for the maximum flow problem, the Hitchcock transportation problem, and the general minimumcost flow problem. Upper bounds on ... the numbers of steps in these algorithms are derived, and are shown to compale favorably with upper bounds on the numbers of steps
Making the most of statistical analyses: Improving interpretation and presentation
 American Journal of Political Science
, 2000
"... Social scientists rarely take full advantage of the information available in their statistical results. As a consequence, they miss opportunities to present quantities that are of greatest substantive interest for their research and express the appropriate degree of certainty about these quantities. ..."
Abstract

Cited by 550 (24 self)
 Add to MetaCart
Social scientists rarely take full advantage of the information available in their statistical results. As a consequence, they miss opportunities to present quantities that are of greatest substantive interest for their research and express the appropriate degree of certainty about these quantities. In this article, we offer an approach, built on the technique of statistical simulation, to extract the currently overlooked information from any statistical method and to interpret and present it in a readerfriendly manner. Using this technique requires some expertise,
Improved algorithms for optimal winner determination in combinatorial auctions and generalizations
, 2000
"... Combinatorial auctions can be used to reach efficient resource and task allocations in multiagent systems where the items are complementary. Determining the winners is NPcomplete and inapproximable, but it was recently shown that optimal search algorithms do very well on average. This paper present ..."
Abstract

Cited by 598 (55 self)
 Add to MetaCart
presents a more sophisticated search algorithm for optimal (and anytime) winner determination, including structural improvements that reduce search tree size, faster data structures, and optimizations at search nodes based on driving toward, identifying and solving tractable special cases. We also uncover
Improved Approximation Algorithms for Maximum Cut and Satisfiability Problems Using Semidefinite Programming
 Journal of the ACM
, 1995
"... We present randomized approximation algorithms for the maximum cut (MAX CUT) and maximum 2satisfiability (MAX 2SAT) problems that always deliver solutions of expected value at least .87856 times the optimal value. These algorithms use a simple and elegant technique that randomly rounds the solution ..."
Abstract

Cited by 1231 (13 self)
 Add to MetaCart
We present randomized approximation algorithms for the maximum cut (MAX CUT) and maximum 2satisfiability (MAX 2SAT) problems that always deliver solutions of expected value at least .87856 times the optimal value. These algorithms use a simple and elegant technique that randomly rounds the solution to a nonlinear programming relaxation. This relaxation can be interpreted both as a semidefinite program and as an eigenvalue minimization problem. The best previously known approximation algorithms for these problems had performance guarantees of ...
Boosting a Weak Learning Algorithm By Majority
, 1995
"... We present an algorithm for improving the accuracy of algorithms for learning binary concepts. The improvement is achieved by combining a large number of hypotheses, each of which is generated by training the given learning algorithm on a different set of examples. Our algorithm is based on ideas pr ..."
Abstract

Cited by 516 (15 self)
 Add to MetaCart
presented by Schapire in his paper "The strength of weak learnability", and represents an improvement over his results. The analysis of our algorithm provides general upper bounds on the resources required for learning in Valiant's polynomial PAC learning framework, which are the best general
Improving DirectMapped Cache Performance by the Addition of a Small FullyAssociative Cache and Prefetch Buffers
, 1990
"... ..."
Analysis of Shellsort and related algorithms
 ESA ’96: Fourth Annual European Symposium on Algorithms
, 1996
"... This is an abstract of a survey talk on the theoretical and empirical studies that have been done over the past four decades on the Shellsort algorithm and its variants. The discussion includes: upper bounds, including linkages to numbertheoretic properties of the algorithm; lower bounds on Shellso ..."
Abstract

Cited by 31 (0 self)
 Add to MetaCart
This is an abstract of a survey talk on the theoretical and empirical studies that have been done over the past four decades on the Shellsort algorithm and its variants. The discussion includes: upper bounds, including linkages to numbertheoretic properties of the algorithm; lower bounds
Worstcase equilibria
 IN PROCEEDINGS OF THE 16TH ANNUAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE
, 1999
"... In a system in which noncooperative agents share a common resource, we propose the ratio between the worst possible Nash equilibrium and the social optimum as a measure of the effectiveness of the system. Deriving upper and lower bounds for this ratio in a model in which several agents share a ver ..."
Abstract

Cited by 851 (17 self)
 Add to MetaCart
In a system in which noncooperative agents share a common resource, we propose the ratio between the worst possible Nash equilibrium and the social optimum as a measure of the effectiveness of the system. Deriving upper and lower bounds for this ratio in a model in which several agents share a
Results 1  10
of
649,695