Results 1  10
of
48,111
IdentityBased Encryption from the Weil Pairing
, 2001
"... We propose a fully functional identitybased encryption scheme (IBE). The scheme has chosen ciphertext security in the random oracle model assuming an elliptic curve variant of the computational DiffieHellman problem. Our system is based on bilinear maps between groups. The Weil pairing on elliptic ..."
Abstract

Cited by 1699 (29 self)
 Add to MetaCart
We propose a fully functional identitybased encryption scheme (IBE). The scheme has chosen ciphertext security in the random oracle model assuming an elliptic curve variant of the computational DiffieHellman problem. Our system is based on bilinear maps between groups. The Weil pairing
Random key predistribution schemes for sensor networks
 IN PROCEEDINGS OF THE 2003 IEEE SYMPOSIUM ON SECURITY AND PRIVACY
, 2003
"... Key establishment in sensor networks is a challenging problem because asymmetric key cryptosystems are unsuitable for use in resource constrained sensor nodes, and also because the nodes could be physically compromised by an adversary. We present three new mechanisms for key establishment using the ..."
Abstract

Cited by 813 (14 self)
 Add to MetaCart
the framework of predistributing a random set of keys to each node. First, in the qcomposite keys scheme, we trade off the unlikeliness of a largescale network attack in order to significantly strengthen random key predistribution’s strength against smallerscale attacks. Second, in the multipath
A Pairwise Key PreDistribution Scheme for Wireless Sensor Networks
, 2003
"... this paper, we provide a framework in which to study the security of key predistribution schemes, propose a new key predistribution scheme which substantially improves the resilience of the network compared to previous schemes, and give an indepth analysis of our scheme in terms of network resili ..."
Abstract

Cited by 554 (18 self)
 Add to MetaCart
this paper, we provide a framework in which to study the security of key predistribution schemes, propose a new key predistribution scheme which substantially improves the resilience of the network compared to previous schemes, and give an indepth analysis of our scheme in terms of network
PseudoRandom Generation from OneWay Functions
 PROC. 20TH STOC
, 1988
"... Pseudorandom generators are fundamental to many theoretical and applied aspects of computing. We show howto construct a pseudorandom generator from any oneway function. Since it is easy to construct a oneway function from a pseudorandom generator, this result shows that there is a pseudorandom gene ..."
Abstract

Cited by 887 (22 self)
 Add to MetaCart
Pseudorandom generators are fundamental to many theoretical and applied aspects of computing. We show howto construct a pseudorandom generator from any oneway function. Since it is easy to construct a oneway function from a pseudorandom generator, this result shows that there is a pseudorandom
Universal OneWay Hash Functions and their Cryptographic Applications
, 1989
"... We define a Universal OneWay Hash Function family, a new primitive which enables the compression of elements in the function domain. The main property of this primitive is that given an element x in the domain, it is computationally hard to find a different domain element which collides with x. We ..."
Abstract

Cited by 357 (15 self)
 Add to MetaCart
prove constructively that universal oneway hash functions exist if any 11 oneway functions exist. Among the various applications of the primitive is a OneWay based Secure Digital Signature Scheme which is existentially secure against adoptive attacks. Previously, all provably secure signature
NonMalleable Cryptography
 SIAM Journal on Computing
, 2000
"... The notion of nonmalleable cryptography, an extension of semantically secure cryptography, is defined. Informally, in the context of encryption the additional requirement is that given the ciphertext it is impossible to generate a different ciphertext so that the respective plaintexts are related. ..."
Abstract

Cited by 490 (21 self)
 Add to MetaCart
The notion of nonmalleable cryptography, an extension of semantically secure cryptography, is defined. Informally, in the context of encryption the additional requirement is that given the ciphertext it is impossible to generate a different ciphertext so that the respective plaintexts are related
Widearea cooperative storage with CFS
, 2001
"... The Cooperative File System (CFS) is a new peertopeer readonly storage system that provides provable guarantees for the efficiency, robustness, and loadbalance of file storage and retrieval. CFS does this with a completely decentralized architecture that can scale to large systems. CFS servers pr ..."
Abstract

Cited by 1009 (56 self)
 Add to MetaCart
provide a distributed hash table (DHash) for block storage. CFS clients interpret DHash blocks as a file system. DHash distributes and caches blocks at a fine granularity to achieve load balance, uses replication for robustness, and decreases latency with server selection. DHash finds blocks using
The Protection of Information in Computer Systems
, 1975
"... This tutorial paper explores the mechanics of protecting computerstored information from unauthorized use or modification. It concentrates on those architectural structureswhether hardware or softwarethat are necessary to support information protection. The paper develops in three main sections ..."
Abstract

Cited by 815 (2 self)
 Add to MetaCart
sections. Section I describes desired functions, design principles, and examples of elementary protection and authentication mechanisms. Any reader familiar with computers should find the first section to be reasonably accessible. Section II requires some familiarity with descriptorbased computer
A survey of generalpurpose computation on graphics hardware
, 2007
"... The rapid increase in the performance of graphics hardware, coupled with recent improvements in its programmability, have made graphics hardware acompelling platform for computationally demanding tasks in awide variety of application domains. In this report, we describe, summarize, and analyze the l ..."
Abstract

Cited by 545 (18 self)
 Add to MetaCart
The rapid increase in the performance of graphics hardware, coupled with recent improvements in its programmability, have made graphics hardware acompelling platform for computationally demanding tasks in awide variety of application domains. In this report, we describe, summarize, and analyze
Fuzzy extractors: How to generate strong keys from biometrics and other noisy data. Technical Report 2003/235, Cryptology ePrint archive, http://eprint.iacr.org, 2006. Previous version appeared at EUROCRYPT 2004
 34 [DRS07] [DS05] [EHMS00] [FJ01] Yevgeniy Dodis, Leonid Reyzin, and Adam
, 2004
"... We provide formal definitions and efficient secure techniques for • turning noisy information into keys usable for any cryptographic application, and, in particular, • reliably and securely authenticating biometric data. Our techniques apply not just to biometric information, but to any keying mater ..."
Abstract

Cited by 532 (38 self)
 Add to MetaCart
We provide formal definitions and efficient secure techniques for • turning noisy information into keys usable for any cryptographic application, and, in particular, • reliably and securely authenticating biometric data. Our techniques apply not just to biometric information, but to any keying material that, unlike traditional cryptographic keys, is (1) not reproducible precisely and (2) not distributed uniformly. We propose two primitives: a fuzzy extractor reliably extracts nearly uniform randomness R from its input; the extraction is errortolerant in the sense that R will be the same even if the input changes, as long as it remains reasonably close to the original. Thus, R can be used as a key in a cryptographic application. A secure sketch produces public information about its input w that does not reveal w, and yet allows exact recovery of w given another value that is close to w. Thus, it can be used to reliably reproduce errorprone biometric inputs without incurring the security risk inherent in storing them. We define the primitives to be both formally secure and versatile, generalizing much prior work. In addition, we provide nearly optimal constructions of both primitives for various measures of “closeness” of input data, such as Hamming distance, edit distance, and set difference.
Results 1  10
of
48,111