Results 1  10
of
184,606
Implementing the DantzigFulkersonJohnson Algorithm for Large Traveling Salesman Problems
, 2003
"... Dantzig, Fulkerson, and Johnson (1954) introduced the cuttingplane method as a means of attacking the traveling salesman problem; this method has been applied to broad classes of problems in combinatorial optimization and integer programming. In this paper we discuss an implementation of Dantzig et ..."
Abstract

Cited by 39 (6 self)
 Add to MetaCart
Dantzig, Fulkerson, and Johnson (1954) introduced the cuttingplane method as a means of attacking the traveling salesman problem; this method has been applied to broad classes of problems in combinatorial optimization and integer programming. In this paper we discuss an implementation of Dantzig
On the Solution of Traveling Salesman Problems
 DOC. MATH. J. DMV
, 1998
"... Following the theoretical studies of J.B. Robinson and H.W. Kuhn in the late 1940s and the early 1950s, G.B. Dantzig, R. Fulkerson, and S.M. Johnson demonstrated in 1954 that large instances of the TSP could be solved by linear programming. Their approach remains the only known tool for solving TS ..."
Abstract

Cited by 226 (7 self)
 Add to MetaCart
Following the theoretical studies of J.B. Robinson and H.W. Kuhn in the late 1940s and the early 1950s, G.B. Dantzig, R. Fulkerson, and S.M. Johnson demonstrated in 1954 that large instances of the TSP could be solved by linear programming. Their approach remains the only known tool for solving
Planning Algorithms
, 2004
"... This book presents a unified treatment of many different kinds of planning algorithms. The subject lies at the crossroads between robotics, control theory, artificial intelligence, algorithms, and computer graphics. The particular subjects covered include motion planning, discrete planning, planning ..."
Abstract

Cited by 1108 (51 self)
 Add to MetaCart
This book presents a unified treatment of many different kinds of planning algorithms. The subject lies at the crossroads between robotics, control theory, artificial intelligence, algorithms, and computer graphics. The particular subjects covered include motion planning, discrete planning
Improved Approximation Algorithms for Maximum Cut and Satisfiability Problems Using Semidefinite Programming
 Journal of the ACM
, 1995
"... We present randomized approximation algorithms for the maximum cut (MAX CUT) and maximum 2satisfiability (MAX 2SAT) problems that always deliver solutions of expected value at least .87856 times the optimal value. These algorithms use a simple and elegant technique that randomly rounds the solution ..."
Abstract

Cited by 1231 (13 self)
 Add to MetaCart
We present randomized approximation algorithms for the maximum cut (MAX CUT) and maximum 2satisfiability (MAX 2SAT) problems that always deliver solutions of expected value at least .87856 times the optimal value. These algorithms use a simple and elegant technique that randomly rounds
The traveling salesman problem
, 1994
"... This paper presents a selfcontained introduction into algorithmic and computational aspects of the traveling salesman problem and of related problems, along with their theoretical prerequisites as seen from the point of view of an operations researcher who wants to solve practical problem instances ..."
Abstract

Cited by 130 (5 self)
 Add to MetaCart
This paper presents a selfcontained introduction into algorithmic and computational aspects of the traveling salesman problem and of related problems, along with their theoretical prerequisites as seen from the point of view of an operations researcher who wants to solve practical problem
The Viterbi algorithm
 Proceedings of the IEEE
, 1973
"... vol. 6, no. 8, pp. 211220, 1951. [7] J. L. Anderson and J. W..Ryon, “Electromagnetic radiation in accelerated systems, ” Phys. Rev., vol. 181, pp. 17651775, 1969. [8] C. V. Heer, “Resonant frequencies of an electromagnetic cavity in an accelerated system of reference, ” Phys. Reu., vol. 134, pp. A ..."
Abstract

Cited by 985 (3 self)
 Add to MetaCart
vol. 6, no. 8, pp. 211220, 1951. [7] J. L. Anderson and J. W..Ryon, “Electromagnetic radiation in accelerated systems, ” Phys. Rev., vol. 181, pp. 17651775, 1969. [8] C. V. Heer, “Resonant frequencies of an electromagnetic cavity in an accelerated system of reference, ” Phys. Reu., vol. 134, pp. A799A804, 1964. [9] T. C. Mo, “Theory of electrodynamics in media in noninertial frames and applications, ” J. Math. Phys., vol. 11, pp. 25892610, 1970.
The Hungarian method for the assignment problem
 Naval Res. Logist. Quart
, 1955
"... Assuming that numerical scores are available for the performance of each of n persons on each of n jobs, the "assignment problem" is the quest for an assignment of persons to jobs so that the sum of the n scores so obtained is as large as possible. It is shown that ideas latent in the work ..."
Abstract

Cited by 1238 (0 self)
 Add to MetaCart
Assuming that numerical scores are available for the performance of each of n persons on each of n jobs, the "assignment problem" is the quest for an assignment of persons to jobs so that the sum of the n scores so obtained is as large as possible. It is shown that ideas latent
Where the REALLY Hard Problems Are
 IN J. MYLOPOULOS AND R. REITER (EDS.), PROCEEDINGS OF 12TH INTERNATIONAL JOINT CONFERENCE ON AI (IJCAI91),VOLUME 1
, 1991
"... It is well known that for many NPcomplete problems, such as KSat, etc., typical cases are easy to solve; so that computationally hard cases must be rare (assuming P != NP). This paper shows that NPcomplete problems can be summarized by at least one "order parameter", and that the hard p ..."
Abstract

Cited by 681 (1 self)
 Add to MetaCart
It is well known that for many NPcomplete problems, such as KSat, etc., typical cases are easy to solve; so that computationally hard cases must be rare (assuming P != NP). This paper shows that NPcomplete problems can be summarized by at least one "order parameter", and that the hard
Fast Parallel Algorithms for ShortRange Molecular Dynamics
 JOURNAL OF COMPUTATIONAL PHYSICS
, 1995
"... Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of interatomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dyn ..."
Abstract

Cited by 622 (6 self)
 Add to MetaCart
. The algorithms are tested on a standard LennardJones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers  the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray YMP and C90 algorithm shows
Results 1  10
of
184,606