Results 1  10
of
283,193
Image Compression by Rectangular Wavelet Transform
, 2004
"... We study image compression by a separable wavelet basis y  j), #(x  i)#(2 (x  i)#(y  j), #(x  i)#(y  i) , where k 1 , k 2 # Z+ ; i, j # Z; and #, # are elements of a standard biorthogonal wavelet basis in L 2 (R). Because k 1 #= k 2 , the supports of the basis elements are rec ..."
Abstract
 Add to MetaCart
We study image compression by a separable wavelet basis y  j), #(x  i)#(2 (x  i)#(y  j), #(x  i)#(y  i) , where k 1 , k 2 # Z+ ; i, j # Z; and #, # are elements of a standard biorthogonal wavelet basis in L 2 (R). Because k 1 #= k 2 , the supports of the basis elements
Compressive sampling
, 2006
"... Conventional wisdom and common practice in acquisition and reconstruction of images from frequency data follow the basic principle of the Nyquist density sampling theory. This principle states that to reconstruct an image, the number of Fourier samples we need to acquire must match the desired res ..."
Abstract

Cited by 1427 (15 self)
 Add to MetaCart
resolution of the image, i.e. the number of pixels in the image. This paper surveys an emerging theory which goes by the name of “compressive sampling” or “compressed sensing,” and which says that this conventional wisdom is inaccurate. Perhaps surprisingly, it is possible to reconstruct images or signals
Compressed sensing
 IEEE Trans. Inf. Theory
, 2006
"... We study the notion of Compressed Sensing (CS) as put forward in [14] and related work [20, 3, 4]. The basic idea behind CS is that a signal or image, unknown but supposed to be compressible by a known transform, (eg. wavelet or Fourier), can be subjected to fewer measurements than the nominal numbe ..."
Abstract

Cited by 3600 (24 self)
 Add to MetaCart
We study the notion of Compressed Sensing (CS) as put forward in [14] and related work [20, 3, 4]. The basic idea behind CS is that a signal or image, unknown but supposed to be compressible by a known transform, (eg. wavelet or Fourier), can be subjected to fewer measurements than the nominal
Shiftable Multiscale Transforms
, 1992
"... Orthogonal wavelet transforms have recently become a popular representation for multiscale signal and image analysis. One of the major drawbacks of these representations is their lack of translation invariance: the content of wavelet subbands is unstable under translations of the input signal. Wavel ..."
Abstract

Cited by 557 (36 self)
 Add to MetaCart
Orthogonal wavelet transforms have recently become a popular representation for multiscale signal and image analysis. One of the major drawbacks of these representations is their lack of translation invariance: the content of wavelet subbands is unstable under translations of the input signal
Factoring wavelet transforms into lifting steps
 J. Fourier Anal. Appl
, 1998
"... ABSTRACT. This paper is essentially tutorial in nature. We show how any discrete wavelet transform or two band subband filtering with finite filters can be decomposed into a finite sequence of simple filtering steps, which we call lifting steps but that are also known as ladder structures. This dec ..."
Abstract

Cited by 573 (8 self)
 Add to MetaCart
ABSTRACT. This paper is essentially tutorial in nature. We show how any discrete wavelet transform or two band subband filtering with finite filters can be decomposed into a finite sequence of simple filtering steps, which we call lifting steps but that are also known as ladder structures
A Practical Guide to Wavelet Analysis
, 1998
"... A practical stepbystep guide to wavelet analysis is given, with examples taken from time series of the El Nio Southern Oscillation (ENSO). The guide includes a comparison to the windowed Fourier transform, the choice of an appropriate wavelet basis function, edge effects due to finitelength t ..."
Abstract

Cited by 833 (3 self)
 Add to MetaCart
A practical stepbystep guide to wavelet analysis is given, with examples taken from time series of the El Nio Southern Oscillation (ENSO). The guide includes a comparison to the windowed Fourier transform, the choice of an appropriate wavelet basis function, edge effects due to finite
A theory for multiresolution signal decomposition : the wavelet representation
 IEEE Transaction on Pattern Analysis and Machine Intelligence
, 1989
"... AbstractMultiresolution representations are very effective for analyzing the information content of images. We study the properties of the operator which approximates a signal at a given resolution. We show that the difference of information between the approximation of a signal at the resolutions ..."
Abstract

Cited by 3460 (12 self)
 Add to MetaCart
multiresolution representation called a wavelet representation. It is computed with a pyramidal algorithm based on convolutions with quadrature mirror lilters. For images, the wavelet representation differentiates several spatial orientations. We study the application of this representation to data compression
Image denoising using a scale mixture of Gaussians in the wavelet domain
 IEEE TRANS IMAGE PROCESSING
, 2003
"... We describe a method for removing noise from digital images, based on a statistical model of the coefficients of an overcomplete multiscale oriented basis. Neighborhoods of coefficients at adjacent positions and scales are modeled as the product of two independent random variables: a Gaussian vecto ..."
Abstract

Cited by 514 (17 self)
 Add to MetaCart
We describe a method for removing noise from digital images, based on a statistical model of the coefficients of an overcomplete multiscale oriented basis. Neighborhoods of coefficients at adjacent positions and scales are modeled as the product of two independent random variables: a Gaussian
Singularity Detection And Processing With Wavelets
 IEEE Transactions on Information Theory
, 1992
"... Most of a signal information is often found in irregular structures and transient phenomena. We review the mathematical characterization of singularities with Lipschitz exponents. The main theorems that estimate local Lipschitz exponents of functions, from the evolution across scales of their wavele ..."
Abstract

Cited by 590 (13 self)
 Add to MetaCart
of their wavelet transform are explained. We then prove that the local maxima of a wavelet transform detect the location of irregular structures and provide numerical procedures to compute their Lipschitz exponents. The wavelet transform of singularities with fast oscillations have a different behavior that we
Results 1  10
of
283,193