Results 1  10
of
377,226
IMAGE BITDEPTH ENHANCEMENT VIA MAXIMUMAPOSTERIORI ESTIMATION OF GRAPH AC COMPONENT
"... While modern displays offer high dynamic range (HDR) with large bitdepth for each rendered pixel, the bulk of legacy image and video contents were captured using cameras with shallower bitdepth. In this paper, we study the bitdepth enhancement problem for images, so that a high bitdepth (HBD) im ..."
Abstract
 Add to MetaCart
) image can be reconstructed from an input low bitdepth (LBD) image. The key idea is to apply appropriate smoothing given the constraints that reconstructed signal must lie within the perpixel quantization bins. Specifically, we first define smoothness via a signaldependent graph Laplacian, so
MEGA5: Molecular evolutionary genetics analysis using maximum . . .
, 2011
"... Comparative analysis of molecular sequence data is essential for reconstructing the evolutionary histories of species and inferring the nature and extent of selective forces shaping the evolution of genes and species. Here, we announce the release of Molecular Evolutionary Genetics Analysis version ..."
Abstract

Cited by 6858 (19 self)
 Add to MetaCart
5 (MEGA5), which is a userfriendly software for mining online databases, building sequence alignments and phylogenetic trees, and using methods of evolutionary bioinformatics in basic biology, biomedicine, and evolution. The newest addition in MEGA5 is a collection of maximum likelihood (ML
Representing Moving Images with Layers
, 1994
"... We describe a system for representing moving images with sets of overlapping layers. Each layer contains an intensity map that defines the additive values of each pixel, along with an alpha map that serves as a mask indicating the transparency. The layers are ordered in depth and they occlude each o ..."
Abstract

Cited by 542 (11 self)
 Add to MetaCart
We describe a system for representing moving images with sets of overlapping layers. Each layer contains an intensity map that defines the additive values of each pixel, along with an alpha map that serves as a mask indicating the transparency. The layers are ordered in depth and they occlude each
Approximate Signal Processing
, 1997
"... It is increasingly important to structure signal processing algorithms and systems to allow for trading off between the accuracy of results and the utilization of resources in their implementation. In any particular context, there are typically a variety of heuristic approaches to managing these tra ..."
Abstract

Cited by 516 (2 self)
 Add to MetaCart
It is increasingly important to structure signal processing algorithms and systems to allow for trading off between the accuracy of results and the utilization of resources in their implementation. In any particular context, there are typically a variety of heuristic approaches to managing
Detecting faces in images: A survey
 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
, 2002
"... Images containing faces are essential to intelligent visionbased human computer interaction, and research efforts in face processing include face recognition, face tracking, pose estimation, and expression recognition. However, many reported methods assume that the faces in an image or an image se ..."
Abstract

Cited by 831 (4 self)
 Add to MetaCart
Images containing faces are essential to intelligent visionbased human computer interaction, and research efforts in face processing include face recognition, face tracking, pose estimation, and expression recognition. However, many reported methods assume that the faces in an image or an image
Functional discovery via a compendium of expression profiles. Cell 102:109
, 2000
"... have been devised to survey gene functions en masse either computationally (Marcotte et al., 1999) or experimentally; among these, highly parallel assays of ..."
Abstract

Cited by 537 (8 self)
 Add to MetaCart
have been devised to survey gene functions en masse either computationally (Marcotte et al., 1999) or experimentally; among these, highly parallel assays of
Predictive reward signal of dopamine neurons
 Journal of Neurophysiology
, 1998
"... Schultz, Wolfram. Predictive reward signal of dopamine neurons. is called rewards, which elicit and reinforce approach behavJ. Neurophysiol. 80: 1–27, 1998. The effects of lesions, receptor ior. The functions of rewards were developed further during blocking, electrical selfstimulation, and drugs ..."
Abstract

Cited by 717 (12 self)
 Add to MetaCart
Schultz, Wolfram. Predictive reward signal of dopamine neurons. is called rewards, which elicit and reinforce approach behavJ. Neurophysiol. 80: 1–27, 1998. The effects of lesions, receptor ior. The functions of rewards were developed further during blocking, electrical selfstimulation, and drugs
Image denoising using a scale mixture of Gaussians in the wavelet domain
 IEEE TRANS IMAGE PROCESSING
, 2003
"... We describe a method for removing noise from digital images, based on a statistical model of the coefficients of an overcomplete multiscale oriented basis. Neighborhoods of coefficients at adjacent positions and scales are modeled as the product of two independent random variables: a Gaussian vecto ..."
Abstract

Cited by 514 (17 self)
 Add to MetaCart
coefficient reduces to a weighted average of the local linear estimates over all possible values of the hidden multiplier variable. We demonstrate through simulations with images contaminated by additive white Gaussian noise that the performance of this method substantially surpasses that of previously
Segmentation of brain MR images through a hidden Markov random field model and the expectationmaximization algorithm
 IEEE TRANSACTIONS ON MEDICAL. IMAGING
, 2001
"... The finite mixture (FM) model is the most commonly used model for statistical segmentation of brain magnetic resonance (MR) images because of its simple mathematical form and the piecewise constant nature of ideal brain MR images. However, being a histogrambased model, the FM has an intrinsic limi ..."
Abstract

Cited by 619 (14 self)
 Add to MetaCart
The finite mixture (FM) model is the most commonly used model for statistical segmentation of brain magnetic resonance (MR) images because of its simple mathematical form and the piecewise constant nature of ideal brain MR images. However, being a histogrambased model, the FM has an intrinsic
Just Relax: Convex Programming Methods for Identifying Sparse Signals in Noise
, 2006
"... This paper studies a difficult and fundamental problem that arises throughout electrical engineering, applied mathematics, and statistics. Suppose that one forms a short linear combination of elementary signals drawn from a large, fixed collection. Given an observation of the linear combination that ..."
Abstract

Cited by 496 (2 self)
 Add to MetaCart
This paper studies a difficult and fundamental problem that arises throughout electrical engineering, applied mathematics, and statistics. Suppose that one forms a short linear combination of elementary signals drawn from a large, fixed collection. Given an observation of the linear combination
Results 1  10
of
377,226