Results 1  10
of
822,569
Identifying Occurrences of Maximal Pairs in Multiple Strings
 Proceedings of the 13th Annual Symposium on Combinatorial Pattern Matching,Lecture Notes In Computer Science
, 2002
"... A molecular sequence "model" is a (structured) sequence of distinct or identical strings separated by gaps; here we design and analyze e#cient algorithms for variations of the "Model Matching" and "Model Identification" problems. ..."
Abstract

Cited by 5 (4 self)
 Add to MetaCart
A molecular sequence "model" is a (structured) sequence of distinct or identical strings separated by gaps; here we design and analyze e#cient algorithms for variations of the "Model Matching" and "Model Identification" problems.
String theory and noncommutative geometry
 JHEP
, 1999
"... We extend earlier ideas about the appearance of noncommutative geometry in string theory with a nonzero Bfield. We identify a limit in which the entire string dynamics is described by a minimally coupled (supersymmetric) gauge theory on a noncommutative space, and discuss the corrections away from ..."
Abstract

Cited by 801 (8 self)
 Add to MetaCart
We extend earlier ideas about the appearance of noncommutative geometry in string theory with a nonzero Bfield. We identify a limit in which the entire string dynamics is described by a minimally coupled (supersymmetric) gauge theory on a noncommutative space, and discuss the corrections away from
A Guided Tour to Approximate String Matching
 ACM COMPUTING SURVEYS
, 1999
"... We survey the current techniques to cope with the problem of string matching allowing errors. This is becoming a more and more relevant issue for many fast growing areas such as information retrieval and computational biology. We focus on online searching and mostly on edit distance, explaining t ..."
Abstract

Cited by 584 (38 self)
 Add to MetaCart
We survey the current techniques to cope with the problem of string matching allowing errors. This is becoming a more and more relevant issue for many fast growing areas such as information retrieval and computational biology. We focus on online searching and mostly on edit distance, explaining
Multimodality Image Registration by Maximization of Mutual Information
 IEEE TRANSACTIONS ON MEDICAL IMAGING
, 1997
"... A new approach to the problem of multimodality medical image registration is proposed, using a basic concept from information theory, mutual information (MI), or relative entropy, as a new matching criterion. The method presented in this paper applies MI to measure the statistical dependence or in ..."
Abstract

Cited by 777 (9 self)
 Add to MetaCart
or information redundancy between the image intensities of corresponding voxels in both images, which is assumed to be maximal if the images are geometrically aligned. Maximization of MI is a very general and powerful criterion, because no assumptions are made regarding the nature of this dependence
KodairaSpencer theory of gravity and exact results for quantum string amplitudes
 Commun. Math. Phys
, 1994
"... We develop techniques to compute higher loop string amplitudes for twisted N = 2 theories with ĉ = 3 (i.e. the critical case). An important ingredient is the discovery of an anomaly at every genus in decoupling of BRST trivial states, captured to all orders by a master anomaly equation. In a particu ..."
Abstract

Cited by 545 (60 self)
 Add to MetaCart
We develop techniques to compute higher loop string amplitudes for twisted N = 2 theories with ĉ = 3 (i.e. the critical case). An important ingredient is the discovery of an anomaly at every genus in decoupling of BRST trivial states, captured to all orders by a master anomaly equation. In a
Short signatures from the Weil pairing
, 2001
"... Abstract. We introduce a short signature scheme based on the Computational DiffieHellman assumption on certain elliptic and hyperelliptic curves. The signature length is half the size of a DSA signature for a similar level of security. Our short signature scheme is designed for systems where signa ..."
Abstract

Cited by 743 (28 self)
 Add to MetaCart
Abstract. We introduce a short signature scheme based on the Computational DiffieHellman assumption on certain elliptic and hyperelliptic curves. The signature length is half the size of a DSA signature for a similar level of security. Our short signature scheme is designed for systems where signatures are typed in by a human or signatures are sent over a lowbandwidth channel. 1
Macroscopic strings as heavy quarks in large N gauge theory and Antide Sitter supergravity
 PHYS. J. C22
"... Maldacena has put forward large N correspondence between superconformal field theories on the brane and antide Sitter supergravity in spacetime. We study some aspects of the correspondence between N = 4 superconformal gauge theory on D3brane and maximal supergravity on adS5 × S5 by introducing mac ..."
Abstract

Cited by 510 (1 self)
 Add to MetaCart
for macroscopic string in antide Sitter supergravity. As a byproduct we clarify how Polchinski’s Dirichlet and Neumann open string boundary conditions arise. We then study nonBPS macroscopic string antistring pair configuration as physical realization of heavy quark Wilson loop. We obtain Q ¯ Q static
ChernSimons Gauge Theory as a String Theory
, 2003
"... Certain two dimensional topological field theories can be interpreted as string theory backgrounds in which the usual decoupling of ghosts and matter does not hold. Like ordinary string models, these can sometimes be given spacetime interpretations. For instance, threedimensional ChernSimons gaug ..."
Abstract

Cited by 551 (14 self)
 Add to MetaCart
Certain two dimensional topological field theories can be interpreted as string theory backgrounds in which the usual decoupling of ghosts and matter does not hold. Like ordinary string models, these can sometimes be given spacetime interpretations. For instance, threedimensional Chern
Segmentation of brain MR images through a hidden Markov random field model and the expectationmaximization algorithm
 IEEE TRANSACTIONS ON MEDICAL. IMAGING
, 2001
"... The finite mixture (FM) model is the most commonly used model for statistical segmentation of brain magnetic resonance (MR) images because of its simple mathematical form and the piecewise constant nature of ideal brain MR images. However, being a histogrambased model, the FM has an intrinsic limi ..."
Abstract

Cited by 619 (14 self)
 Add to MetaCart
The finite mixture (FM) model is the most commonly used model for statistical segmentation of brain magnetic resonance (MR) images because of its simple mathematical form and the piecewise constant nature of ideal brain MR images. However, being a histogrambased model, the FM has an intrinsic limitation—no spatial information is taken into account. This causes the FM model to work only on welldefined images with low levels of noise; unfortunately, this is often not the the case due to artifacts such as partial volume effect and bias field distortion. Under these conditions, FM modelbased methods produce unreliable results. In this paper, we propose a novel hidden Markov random field (HMRF) model, which is a stochastic process generated by a MRF whose state sequence cannot be observed directly but which can be indirectly estimated through observations. Mathematically, it can be shown that the FM model is a degenerate version of the HMRF model. The advantage of the HMRF model derives from the way in which the spatial information is encoded through the mutual influences of neighboring sites. Although MRF modeling has been employed in MR image segmentation by other researchers, most reported methods are limited to using MRF as a general prior in an FM modelbased approach. To fit the HMRF model, an EM algorithm is used. We show that by incorporating both the HMRF model and the EM algorithm into a HMRFEM framework, an accurate and robust segmentation can be achieved. More importantly, the HMRFEM framework can easily be combined with other techniques. As an example, we show how the bias field correction algorithm of Guillemaud and Brady (1997) can be incorporated into this framework to achieve a threedimensional fully automated approach for brain MR image segmentation.
Results 1  10
of
822,569