Results 1  10
of
640,329
Measuring and Maximizing Group Closeness Centrality over DiskResident Graphs Technique Report
"... Abstract—As an important metric in graphs, group closeness centrality measures how close a group of vertices is to all other vertices in a graph, and it is used in numerous graph applications such as measuring the dominance and influence of a node group over the graph. However, when a largescale gr ..."
Abstract
 Add to MetaCart
scale graph contains hundreds of millions of nodes/edges which cannot reside entirely in computer’s main memory, measuring and maximizing group closeness become challenging tasks. In this paper, we present a systematic solution for efficiently calculating and maximizing the group closeness for diskresident
Community detection in graphs
, 2009
"... The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices of th ..."
Abstract

Cited by 801 (1 self)
 Add to MetaCart
The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices
Factor Graphs and the SumProduct Algorithm
 IEEE TRANSACTIONS ON INFORMATION THEORY
, 1998
"... A factor graph is a bipartite graph that expresses how a "global" function of many variables factors into a product of "local" functions. Factor graphs subsume many other graphical models including Bayesian networks, Markov random fields, and Tanner graphs. Following one simple c ..."
Abstract

Cited by 1787 (72 self)
 Add to MetaCart
A factor graph is a bipartite graph that expresses how a "global" function of many variables factors into a product of "local" functions. Factor graphs subsume many other graphical models including Bayesian networks, Markov random fields, and Tanner graphs. Following one simple
Centrality in social networks conceptual clarification
 Social Networks
, 1978
"... The intuitive background for measures of structural centrality in social networks is reviewed aPzd existing measures are evaluated in terms of their consistency with intuitions and their interpretability. Three distinct intuitive conceptions of centrality are uncovered and existing measures are refi ..."
Abstract

Cited by 1035 (2 self)
 Add to MetaCart
of small groups is examined. The problem of centrality The idea of centrality as applied to human communication was introduced by Bavelas in 1948. He was specifically concerned with communication in small groups and he hypothesized a relationship between structural centrality and influence in group
Secure Group Communications Using Key Graphs
, 1998
"... Many emerging applications (e.g., teleconference, realtime information services, pay per view, distributed interactive simulation, and collaborative work) are based upon a group communications model, i.e., they require packet delivery from one or more authorized senders to a very large number of au ..."
Abstract

Cited by 552 (17 self)
 Add to MetaCart
Many emerging applications (e.g., teleconference, realtime information services, pay per view, distributed interactive simulation, and collaborative work) are based upon a group communications model, i.e., they require packet delivery from one or more authorized senders to a very large number
Evaluating the Accuracy of SamplingBased Approaches to the Calculation of Posterior Moments
 IN BAYESIAN STATISTICS
, 1992
"... Data augmentation and Gibbs sampling are two closely related, samplingbased approaches to the calculation of posterior moments. The fact that each produces a sample whose constituents are neither independent nor identically distributed complicates the assessment of convergence and numerical accurac ..."
Abstract

Cited by 583 (14 self)
 Add to MetaCart
Data augmentation and Gibbs sampling are two closely related, samplingbased approaches to the calculation of posterior moments. The fact that each produces a sample whose constituents are neither independent nor identically distributed complicates the assessment of convergence and numerical
Finding community structure in networks using the eigenvectors of matrices
, 2006
"... We consider the problem of detecting communities or modules in networks, groups of vertices with a higherthanaverage density of edges connecting them. Previous work indicates that a robust approach to this problem is the maximization of the benefit function known as “modularity ” over possible div ..."
Abstract

Cited by 500 (0 self)
 Add to MetaCart
We consider the problem of detecting communities or modules in networks, groups of vertices with a higherthanaverage density of edges connecting them. Previous work indicates that a robust approach to this problem is the maximization of the benefit function known as “modularity ” over possible
Statistical mechanics of complex networks
 Rev. Mod. Phys
"... Complex networks describe a wide range of systems in nature and society, much quoted examples including the cell, a network of chemicals linked by chemical reactions, or the Internet, a network of routers and computers connected by physical links. While traditionally these systems were modeled as ra ..."
Abstract

Cited by 2083 (10 self)
 Add to MetaCart
as random graphs, it is increasingly recognized that the topology and evolution of real
Dryad: Distributed DataParallel Programs from Sequential Building Blocks
 In EuroSys
, 2007
"... Dryad is a generalpurpose distributed execution engine for coarsegrain dataparallel applications. A Dryad application combines computational “vertices ” with communication “channels ” to form a dataflow graph. Dryad runs the application by executing the vertices of this graph on a set of availa ..."
Abstract

Cited by 730 (27 self)
 Add to MetaCart
simultaneously on multiple computers, or on multiple CPU cores within a computer. The application can discover the size and placement of data at run time, and modify the graph as the computation progresses to make efficient use of the available resources. Dryad is designed to scale from powerful multicore sin
Results 1  10
of
640,329