Results 1  10
of
61,088
Using Linear Algebra for Intelligent Information Retrieval
 SIAM REVIEW
, 1995
"... Currently, most approaches to retrieving textual materials from scientific databases depend on a lexical match between words in users' requests and those in or assigned to documents in a database. Because of the tremendous diversity in the words people use to describe the same document, lexical ..."
Abstract

Cited by 672 (18 self)
 Add to MetaCart
Currently, most approaches to retrieving textual materials from scientific databases depend on a lexical match between words in users' requests and those in or assigned to documents in a database. Because of the tremendous diversity in the words people use to describe the same document, lexical methods are necessarily incomplete and imprecise. Using the singular value decomposition (SVD), one can take advantage of the implicit higherorder structure in the association of terms with documents by determining the SVD of large sparse term by document matrices. Terms and documents represented by 200300 of the largest singular vectors are then matched against user queries. We call this retrieval method Latent Semantic Indexing (LSI) because the subspace represents important associative relationships between terms and documents that are not evident in individual documents. LSI is a completely automatic yet intelligent indexing method, widely applicable, and a promising way to improve users...
A Survey on Sensor Networks
, 2002
"... Recent advancement in wireless communica tions and electronics has enabled the develop ment of lowcost sensor networks. The sensor networks can be used for various application areas (e.g., health, military, home). For different application areas, there are different technical issues that research ..."
Abstract

Cited by 1905 (1 self)
 Add to MetaCart
Recent advancement in wireless communica tions and electronics has enabled the develop ment of lowcost sensor networks. The sensor networks can be used for various application areas (e.g., health, military, home). For different application areas, there are different technical issues
Wireless sensor networks: a survey
, 2002
"... This paper describes the concept of sensor networks which has been made viable by the convergence of microelectromechanical systems technology, wireless communications and digital electronics. First, the sensing tasks and the potential sensor networks applications are explored, and a review of fact ..."
Abstract

Cited by 1936 (23 self)
 Add to MetaCart
This paper describes the concept of sensor networks which has been made viable by the convergence of microelectromechanical systems technology, wireless communications and digital electronics. First, the sensing tasks and the potential sensor networks applications are explored, and a review
Survey on Independent Component Analysis
 NEURAL COMPUTING SURVEYS
, 1999
"... A common problem encountered in such disciplines as statistics, data analysis, signal processing, and neural network research, is nding a suitable representation of multivariate data. For computational and conceptual simplicity, such a representation is often sought as a linear transformation of the ..."
Abstract

Cited by 2241 (104 self)
 Add to MetaCart
A common problem encountered in such disciplines as statistics, data analysis, signal processing, and neural network research, is nding a suitable representation of multivariate data. For computational and conceptual simplicity, such a representation is often sought as a linear transformation
A theory of memory retrieval
 PSYCHOL. REV
, 1978
"... A theory of memory retrieval is developed and is shown to apply over a range of experimental paradigms. Access to memory traces is viewed in terms of a resonance metaphor. The probe item evokes the search set on the basis of probememory item relatedness, just as a ringing tuning fork evokes sympath ..."
Abstract

Cited by 728 (81 self)
 Add to MetaCart
) and to speedaccuracy paradigms; results are found to provide a basis for comparison of these paradigms. It is noted that neural network models can be interfaced to the retrieval theory with little difficulty and that semantic memory models may benefit from such a retrieval scheme.
Analysis, Modeling and Generation of SelfSimilar VBR Video Traffic
, 1994
"... We present a detailed statistical analysis of a 2hour long empirical sample of VBR video. The sample was obtained by applying a simple intraframe video compression code to an action movie. The main findings of our analysis are (1) the tail behavior of the marginal bandwidth distribution can be accu ..."
Abstract

Cited by 546 (6 self)
 Add to MetaCart
be accurately described using "heavytailed" distributions (e.g., Pareto); (2) the autocorrelation of the VBR video sequence decays hyperbolically (equivalent to longrange dependence) and can be modeled using selfsimilar processes. We combine our findings in a new (nonMarkovian) source model
A training algorithm for optimal margin classifiers
 PROCEEDINGS OF THE 5TH ANNUAL ACM WORKSHOP ON COMPUTATIONAL LEARNING THEORY
, 1992
"... A training algorithm that maximizes the margin between the training patterns and the decision boundary is presented. The technique is applicable to a wide variety of classifiaction functions, including Perceptrons, polynomials, and Radial Basis Functions. The effective number of parameters is adjust ..."
Abstract

Cited by 1848 (44 self)
 Add to MetaCart
is adjusted automatically to match the complexity of the problem. The solution is expressed as a linear combination of supporting patterns. These are the subset of training patterns that are closest to the decision boundary. Bounds on the generalization performance based on the leaveoneout method and the VC
Community detection in graphs
, 2009
"... The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices of th ..."
Abstract

Cited by 801 (1 self)
 Add to MetaCart
The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices
Understanding Normal and Impaired Word Reading: Computational Principles in QuasiRegular Domains
 PSYCHOLOGICAL REVIEW
, 1996
"... We develop a connectionist approach to processing in quasiregular domains, as exemplified by English word reading. A consideration of the shortcomings of a previous implementation (Seidenberg & McClelland, 1989, Psych. Rev.) in reading nonwords leads to the development of orthographic and phono ..."
Abstract

Cited by 583 (94 self)
 Add to MetaCart
and phonological representations that capture better the relevant structure among the written and spoken forms of words. In a number of simulation experiments, networks using the new representations learn to read both regular and exception words, including lowfrequency exception words, and yet are still able
Factor Graphs and the SumProduct Algorithm
 IEEE TRANSACTIONS ON INFORMATION THEORY
, 1998
"... A factor graph is a bipartite graph that expresses how a "global" function of many variables factors into a product of "local" functions. Factor graphs subsume many other graphical models including Bayesian networks, Markov random fields, and Tanner graphs. Following one simple c ..."
Abstract

Cited by 1787 (72 self)
 Add to MetaCart
A factor graph is a bipartite graph that expresses how a "global" function of many variables factors into a product of "local" functions. Factor graphs subsume many other graphical models including Bayesian networks, Markov random fields, and Tanner graphs. Following one simple
Results 1  10
of
61,088