Results 1  10
of
358,583
A greedy algorithm for aligning DNA sequences
 J. COMPUT. BIOL
, 2000
"... For aligning DNA sequences that differ only by sequencing errors, or by equivalent errors from other sources, a greedy algorithm can be much faster than traditional dynamic programming approaches and yet produce an alignment that is guaranteed to be theoretically optimal. We introduce a new greedy a ..."
Abstract

Cited by 576 (16 self)
 Add to MetaCart
For aligning DNA sequences that differ only by sequencing errors, or by equivalent errors from other sources, a greedy algorithm can be much faster than traditional dynamic programming approaches and yet produce an alignment that is guaranteed to be theoretically optimal. We introduce a new greedy
Greedy Function Approximation: A Gradient Boosting Machine
 Annals of Statistics
, 2000
"... Function approximation is viewed from the perspective of numerical optimization in function space, rather than parameter space. A connection is made between stagewise additive expansions and steepest{descent minimization. A general gradient{descent \boosting" paradigm is developed for additi ..."
Abstract

Cited by 951 (12 self)
 Add to MetaCart
Function approximation is viewed from the perspective of numerical optimization in function space, rather than parameter space. A connection is made between stagewise additive expansions and steepest{descent minimization. A general gradient{descent \boosting" paradigm is developed for additive expansions based on any tting criterion. Specic algorithms are presented for least{squares, least{absolute{deviation, and Huber{M loss functions for regression, and multi{class logistic likelihood for classication. Special enhancements are derived for the particular case where the individual additive components are regression trees, and tools for interpreting such \TreeBoost" models are presented. Gradient boosting of regression trees produces competitive, highly robust, interpretable procedures for both regression and classication, especially appropriate for mining less than clean data. Connections between this approach and the boosting methods of Freund and Shapire 1996, and Frie...
Homological Algebra of Mirror Symmetry
 in Proceedings of the International Congress of Mathematicians
, 1994
"... Mirror Symmetry was discovered several years ago in string theory as a duality between families of 3dimensional CalabiYau manifolds (more precisely, complex algebraic manifolds possessing holomorphic volume elements without zeroes). The name comes from the symmetry among Hodge numbers. For dual Ca ..."
Abstract

Cited by 529 (3 self)
 Add to MetaCart
Mirror Symmetry was discovered several years ago in string theory as a duality between families of 3dimensional CalabiYau manifolds (more precisely, complex algebraic manifolds possessing holomorphic volume elements without zeroes). The name comes from the symmetry among Hodge numbers. For dual
Using Linear Algebra for Intelligent Information Retrieval
 SIAM REVIEW
, 1995
"... Currently, most approaches to retrieving textual materials from scientific databases depend on a lexical match between words in users' requests and those in or assigned to documents in a database. Because of the tremendous diversity in the words people use to describe the same document, lexical ..."
Abstract

Cited by 672 (18 self)
 Add to MetaCart
Currently, most approaches to retrieving textual materials from scientific databases depend on a lexical match between words in users' requests and those in or assigned to documents in a database. Because of the tremendous diversity in the words people use to describe the same document, lexical methods are necessarily incomplete and imprecise. Using the singular value decomposition (SVD), one can take advantage of the implicit higherorder structure in the association of terms with documents by determining the SVD of large sparse term by document matrices. Terms and documents represented by 200300 of the largest singular vectors are then matched against user queries. We call this retrieval method Latent Semantic Indexing (LSI) because the subspace represents important associative relationships between terms and documents that are not evident in individual documents. LSI is a completely automatic yet intelligent indexing method, widely applicable, and a promising way to improve users...
How Much Training is Needed in MultipleAntenna Wireless Links?
 IEEE Trans. Inform. Theory
, 2000
"... .... ..."
Inducing Features of Random Fields
 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
, 1997
"... We present a technique for constructing random fields from a set of training samples. The learning paradigm builds increasingly complex fields by allowing potential functions, or features, that are supported by increasingly large subgraphs. Each feature has a weight that is trained by minimizing the ..."
Abstract

Cited by 664 (14 self)
 Add to MetaCart
the KullbackLeibler divergence between the model and the empirical distribution of the training data. A greedy algorithm determines how features are incrementally added to the field and an iterative scaling algorithm is used to estimate the optimal values of the weights. The random field models and techniques
A Compositional Approach to Performance Modelling
, 1996
"... Performance modelling is concerned with the capture and analysis of the dynamic behaviour of computer and communication systems. The size and complexity of many modern systems result in large, complex models. A compositional approach decomposes the system into subsystems that are smaller and more ea ..."
Abstract

Cited by 746 (102 self)
 Add to MetaCart
easily modelled. In this thesis a novel compositional approach to performance modelling is presented. This approach is based on a suitably enhanced process algebra, PEPA (Performance Evaluation Process Algebra). The compositional nature of the language provides benefits for model solution as well
Fuzzy extractors: How to generate strong keys from biometrics and other noisy data. Technical Report 2003/235, Cryptology ePrint archive, http://eprint.iacr.org, 2006. Previous version appeared at EUROCRYPT 2004
 34 [DRS07] [DS05] [EHMS00] [FJ01] Yevgeniy Dodis, Leonid Reyzin, and Adam
, 2004
"... We provide formal definitions and efficient secure techniques for • turning noisy information into keys usable for any cryptographic application, and, in particular, • reliably and securely authenticating biometric data. Our techniques apply not just to biometric information, but to any keying mater ..."
Abstract

Cited by 532 (38 self)
 Add to MetaCart
We provide formal definitions and efficient secure techniques for • turning noisy information into keys usable for any cryptographic application, and, in particular, • reliably and securely authenticating biometric data. Our techniques apply not just to biometric information, but to any keying material that, unlike traditional cryptographic keys, is (1) not reproducible precisely and (2) not distributed uniformly. We propose two primitives: a fuzzy extractor reliably extracts nearly uniform randomness R from its input; the extraction is errortolerant in the sense that R will be the same even if the input changes, as long as it remains reasonably close to the original. Thus, R can be used as a key in a cryptographic application. A secure sketch produces public information about its input w that does not reveal w, and yet allows exact recovery of w given another value that is close to w. Thus, it can be used to reliably reproduce errorprone biometric inputs without incurring the security risk inherent in storing them. We define the primitives to be both formally secure and versatile, generalizing much prior work. In addition, we provide nearly optimal constructions of both primitives for various measures of “closeness” of input data, such as Hamming distance, edit distance, and set difference.
Comprehending Monads
 Mathematical Structures in Computer Science
, 1992
"... Category theorists invented monads in the 1960's to concisely express certain aspects of universal algebra. Functional programmers invented list comprehensions in the 1970's to concisely express certain programs involving lists. This paper shows how list comprehensions may be generalised t ..."
Abstract

Cited by 522 (16 self)
 Add to MetaCart
Category theorists invented monads in the 1960's to concisely express certain aspects of universal algebra. Functional programmers invented list comprehensions in the 1970's to concisely express certain programs involving lists. This paper shows how list comprehensions may be generalised
Implementing data cubes efficiently
 In SIGMOD
, 1996
"... Decision support applications involve complex queries on very large databases. Since response times should be small, query optimization is critical. Users typically view the data as multidimensional data cubes. Each cell of the data cube is a view consisting of an aggregation of interest, like total ..."
Abstract

Cited by 545 (1 self)
 Add to MetaCart
to materializing the data cube. In this paper, we investigate the issue of which cells (views) to materialize when it is too expensive to materialize all views. A lattice framework is used to express dependencies among views. We present greedy algorithms that work off this lattice and determine a good set of views
Results 1  10
of
358,583