Results 1  10
of
968,627
How to get more mileage from randomness extractors
, 2007
"... Let C be a class of distributions over {0, 1}^n. A deterministic randomness extractor for C isa function E: {0, 1}n! {0, 1}m such that for any X in C the distribution E(X) is statisticallyclose to the uniform distribution. A long line of research deals with explicit constructions of such extractors ..."
Abstract

Cited by 18 (5 self)
 Add to MetaCart
Let C be a class of distributions over {0, 1}^n. A deterministic randomness extractor for C isa function E: {0, 1}n! {0, 1}m such that for any X in C the distribution E(X) is statisticallyclose to the uniform distribution. A long line of research deals with explicit constructions of such extractors
Fuzzy extractors: How to generate strong keys from biometrics and other noisy data. Technical Report 2003/235, Cryptology ePrint archive, http://eprint.iacr.org, 2006. Previous version appeared at EUROCRYPT 2004
 34 [DRS07] [DS05] [EHMS00] [FJ01] Yevgeniy Dodis, Leonid Reyzin, and Adam
, 2004
"... We provide formal definitions and efficient secure techniques for • turning noisy information into keys usable for any cryptographic application, and, in particular, • reliably and securely authenticating biometric data. Our techniques apply not just to biometric information, but to any keying mater ..."
Abstract

Cited by 532 (38 self)
 Add to MetaCart
material that, unlike traditional cryptographic keys, is (1) not reproducible precisely and (2) not distributed uniformly. We propose two primitives: a fuzzy extractor reliably extracts nearly uniform randomness R from its input; the extraction is errortolerant in the sense that R will be the same even
PseudoRandom Generation from OneWay Functions
 PROC. 20TH STOC
, 1988
"... Pseudorandom generators are fundamental to many theoretical and applied aspects of computing. We show howto construct a pseudorandom generator from any oneway function. Since it is easy to construct a oneway function from a pseudorandom generator, this result shows that there is a pseudorandom gene ..."
Abstract

Cited by 887 (22 self)
 Add to MetaCart
Pseudorandom generators are fundamental to many theoretical and applied aspects of computing. We show howto construct a pseudorandom generator from any oneway function. Since it is easy to construct a oneway function from a pseudorandom generator, this result shows that there is a pseudorandom
DART: Directed automated random testing
 In Programming Language Design and Implementation (PLDI
, 2005
"... We present a new tool, named DART, for automatically testing software that combines three main techniques: (1) automated extraction of the interface of a program with its external environment using static sourcecode parsing; (2) automatic generation of a test driver for this interface that performs ..."
Abstract

Cited by 823 (41 self)
 Add to MetaCart
that performs random testing to simulate the most general environment the program can operate in; and (3) dynamic analysis of how the program behaves under random testing and automatic generation of new test inputs to direct systematically the execution along alternative program paths. Together, these three
Markov Random Field Models in Computer Vision
, 1994
"... . A variety of computer vision problems can be optimally posed as Bayesian labeling in which the solution of a problem is defined as the maximum a posteriori (MAP) probability estimate of the true labeling. The posterior probability is usually derived from a prior model and a likelihood model. The l ..."
Abstract

Cited by 515 (18 self)
 Add to MetaCart
. The latter relates to how data is observed and is problem domain dependent. The former depends on how various prior constraints are expressed. Markov Random Field Models (MRF) theory is a tool to encode contextual constraints into the prior probability. This paper presents a unified approach for MRF modeling
How Iris Recognition Works
, 2003
"... Algorithms developed by the author for recognizing persons by their iris patterns have now been tested in six field and laboratory trials, producing no false matches in several million comparison tests. The recognition principle is the failure of a test of statistical independence on iris phase st ..."
Abstract

Cited by 495 (4 self)
 Add to MetaCart
Algorithms developed by the author for recognizing persons by their iris patterns have now been tested in six field and laboratory trials, producing no false matches in several million comparison tests. The recognition principle is the failure of a test of statistical independence on iris phase structure encoded by multiscale quadrature wavelets. The combinatorial complexity of this phase information across different persons spans about 244 degrees of freedom and generates a discrimination entropy of about 3.2 bits/mm over the iris, enabling realtime decisions about personal identity with extremely high confidence. The high confidence levels are important because they allow very large databases to be searched exhaustively (onetomany “identification mode”) without making any false matches, despite so many chances. Biometrics lacking this property can only survive onetoone (“verification”) or few comparisons. This paper explains the algorithms for iris recognition, and presents the results of 2.3 million comparisons among eye images acquired in trials in Britain, the USA, and Japan. 1
Random key predistribution schemes for sensor networks
 IN PROCEEDINGS OF THE 2003 IEEE SYMPOSIUM ON SECURITY AND PRIVACY
, 2003
"... Key establishment in sensor networks is a challenging problem because asymmetric key cryptosystems are unsuitable for use in resource constrained sensor nodes, and also because the nodes could be physically compromised by an adversary. We present three new mechanisms for key establishment using the ..."
Abstract

Cited by 813 (14 self)
 Add to MetaCart
reinforcement scheme, we show how to strengthen the security between any two nodes by leveraging the security of other links. Finally, we present the randompairwise keys scheme, which perfectly preserves the secrecy of the rest of the network when any node is captured, and also enables nodetonode authentication
Predicting How People Play Games: Reinforcement Learning . . .
 AMERICAN ECONOMIC REVIEW
, 1998
"... ..."
Random Oracles are Practical: A Paradigm for Designing Efficient Protocols
, 1995
"... We argue that the random oracle model  where all parties have access to a public random oracle  provides a bridge between cryptographic theory and cryptographic practice. In the paradigm we suggest, a practical protocol P is produced by first devising and proving correct a protocol P R for the ..."
Abstract

Cited by 1643 (75 self)
 Add to MetaCart
for the random oracle model, and then replacing oracle accesses by the computation of an "appropriately chosen" function h. This paradigm yields protocols much more efficient than standard ones while retaining many of the advantages of provable security. We illustrate these gains for problems including
Results 1  10
of
968,627