Results 1  10
of
23,571
Hitting forbidden subgraphs in graphs of bounded treewidth?
"... Abstract. We study the complexity of a generic hitting problem HSubgraph Hitting, where given a fixed pattern graph H and an input graph G, we seek for the minimum size of a set X ⊆ V (G) that hits all subgraphs of G isomorphic to H. In the colorful variant of the problem, each vertex of G is preco ..."
Abstract
 Add to MetaCart
Abstract. We study the complexity of a generic hitting problem HSubgraph Hitting, where given a fixed pattern graph H and an input graph G, we seek for the minimum size of a set X ⊆ V (G) that hits all subgraphs of G isomorphic to H. In the colorful variant of the problem, each vertex of G
A Partial KArboretum of Graphs With Bounded Treewidth
 J. Algorithms
, 1998
"... The notion of treewidth has seen to be a powerful vehicle for many graph algorithmic studies. This survey paper wants to give an overview of many classes of graphs that can be seen to have a uniform upper bound on the treewidth of graphs in the class. Also, some mutual relations between such classes ..."
Abstract

Cited by 328 (34 self)
 Add to MetaCart
The notion of treewidth has seen to be a powerful vehicle for many graph algorithmic studies. This survey paper wants to give an overview of many classes of graphs that can be seen to have a uniform upper bound on the treewidth of graphs in the class. Also, some mutual relations between
Community detection in graphs
, 2009
"... The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices of th ..."
Abstract

Cited by 801 (1 self)
 Add to MetaCart
The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices
Graphbased algorithms for Boolean function manipulation
 IEEE TRANSACTIONS ON COMPUTERS
, 1986
"... In this paper we present a new data structure for representing Boolean functions and an associated set of manipulation algorithms. Functions are represented by directed, acyclic graphs in a manner similar to the representations introduced by Lee [1] and Akers [2], but with further restrictions on th ..."
Abstract

Cited by 3499 (47 self)
 Add to MetaCart
In this paper we present a new data structure for representing Boolean functions and an associated set of manipulation algorithms. Functions are represented by directed, acyclic graphs in a manner similar to the representations introduced by Lee [1] and Akers [2], but with further restrictions
Property Testing and its connection to Learning and Approximation
"... We study the question of determining whether an unknown function has a particular property or is fflfar from any function with that property. A property testing algorithm is given a sample of the value of the function on instances drawn according to some distribution, and possibly may query the fun ..."
Abstract

Cited by 498 (68 self)
 Add to MetaCart
the function on instances of its choice. First, we establish some connections between property testing and problems in learning theory. Next, we focus on testing graph properties, and devise algorithms to test whether a graph has properties such as being kcolorable or having a aeclique (clique of density ae
Finding community structure in networks using the eigenvectors of matrices
, 2006
"... We consider the problem of detecting communities or modules in networks, groups of vertices with a higherthanaverage density of edges connecting them. Previous work indicates that a robust approach to this problem is the maximization of the benefit function known as “modularity ” over possible div ..."
Abstract

Cited by 500 (0 self)
 Add to MetaCart
divisions of a network. Here we show that this maximization process can be written in terms of the eigenspectrum of a matrix we call the modularity matrix, which plays a role in community detection similar to that played by the graph Laplacian in graph partitioning calculations. This result leads us to a
Parameterized Complexity
, 1998
"... the rapidly developing systematic connections between FPT and useful heuristic algorithms  a new and exciting bridge between the theory of computing and computing in practice. The organizers of the seminar strongly believe that knowledge of parameterized complexity techniques and results belongs ..."
Abstract

Cited by 1218 (75 self)
 Add to MetaCart
the rapidly developing systematic connections between FPT and useful heuristic algorithms  a new and exciting bridge between the theory of computing and computing in practice. The organizers of the seminar strongly believe that knowledge of parameterized complexity techniques and results belongs into the toolkit of every algorithm designer. The purpose of the seminar was to bring together leading experts from all over the world, and from the diverse areas of computer science that have been attracted to this new framework. The seminar was intended as the rst larger international meeting with a specic focus on parameterized complexity, and it hopefully serves as a driving force in the development of the eld. 1 We had 49 participants from Australia, Canada, India, Israel, New Zealand, USA, and various European countries. During the workshop 25 lectures were given. Moreover, one night session was devoted to open problems and Thursday was basically used for problem discussion
The StructureMapping Engine: Algorithm and Examples
 Artificial Intelligence
, 1989
"... This paper describes the StructureMapping Engine (SME), a program for studying analogical processing. SME has been built to explore Gentner's Structuremapping theory of analogy, and provides a "tool kit" for constructing matching algorithms consistent with this theory. Its flexibili ..."
Abstract

Cited by 512 (115 self)
 Add to MetaCart
, and demonstrate that most of the steps are polynomial, typically bounded by O (N 2 ). Next we demonstrate some examples of its operation taken from our cognitive simulation studies and work in machine learning. Finally, we compare SME to other analogy programs and discuss several areas for future work. This paper
Results 1  10
of
23,571