Results 1  10
of
386
Cluster Ensembles  A Knowledge Reuse Framework for Combining Multiple Partitions
 Journal of Machine Learning Research
, 2002
"... This paper introduces the problem of combining multiple partitionings of a set of objects into a single consolidated clustering without accessing the features or algorithms that determined these partitionings. We first identify several application scenarios for the resultant 'knowledge reuse&ap ..."
Abstract

Cited by 603 (20 self)
 Add to MetaCart
This paper introduces the problem of combining multiple partitionings of a set of objects into a single consolidated clustering without accessing the features or algorithms that determined these partitionings. We first identify several application scenarios for the resultant 'knowledge reuse
Hitting sets when the VCdimension is small
, 2004
"... We present an approximation algorithm for the hitting set problem when the VCdimension of the set system is small. Our algorithm builds on Pach & Agarwal [7], and we show how it can be parallelized and extended to the minimum cost hitting set problem. The running time of the proposed algorithm ..."
Abstract
 Add to MetaCart
We present an approximation algorithm for the hitting set problem when the VCdimension of the set system is small. Our algorithm builds on Pach & Agarwal [7], and we show how it can be parallelized and extended to the minimum cost hitting set problem. The running time of the proposed algorithm
VCdimension and shortest path algorithms
"... We explore the relationship between VCdimension and graph algorithm design. In particular, we show that set systems induced by sets of vertices on shortest paths have VCdimension at most two. This allows us to use a result from learning theory to improve time bounds on query algorithms for the p ..."
Abstract

Cited by 17 (5 self)
 Add to MetaCart
We explore the relationship between VCdimension and graph algorithm design. In particular, we show that set systems induced by sets of vertices on shortest paths have VCdimension at most two. This allows us to use a result from learning theory to improve time bounds on query algorithms
VCDimension of Exterior Visibility of Polyhedra
, 2001
"... In this paper, we address the problem of finding the minimal number of viewpoints outside a polyhedron in two or three dimensions such that every point on the exterior of the polyhedron is visible from at least one of the chosen viewpoints. This problem which we call the minimum fortress guard probl ..."
Abstract

Cited by 3 (2 self)
 Add to MetaCart
this problem shows the NPcompleteness of MFGP. Instead of relying on heuristic searches, we address the approximability of the camera placement problem. It is well known (and easy to see) that this problem can be cast as a hitting set problem. While the approximability of generic instances of the hitting set
COLORING DENSE GRAPHS VIA VCDIMENSION
, 2010
"... Abstract. The VapnikČervonenkis dimension is a complexity measure of setsystems, or hypergraphs. Its application to graphs is usually done by considering the sets of neighborhoods of the vertices (see [1] and [5]), hence providing a setsystem. But the graph structure is lost in the process. The a ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
. The aim of this paper is to introduce the notion of paired VCdimension, a generalization of VCdimension to setsystems endowed with a graph structure, hence a collection of pairs of subsets. The classical VCtheory is generally used in combinatorics to bound the transversality of a hypergraph in terms
Identifying codes in hereditary classes of graphs and VCdimension
, 2014
"... An identifying code of a graph is a subset of its vertices such that every vertex of the graph is uniquely identified by the set of its neighbours within the code. We show a dichotomy for the size of the smallest identifying code in classes of graphs closed under induced subgraphs. Our dichotomy is ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
is derived from the VCdimension of the considered class C, that is the maximum VCdimension over the hypergraphs formed by the closed neighbourhoods of elements of C. We show that hereditary classes with infinite VCdimension have infinitely many graphs with an identifying code of size logarithmic
Evaluating Stream Buffers as a Secondary Cache Replacement
 In Proceedings of the 21st Annual International Symposium on Computer Architecture
, 1994
"... Today’s commodity microprocessors require a low latency memory system to achieve high sustained performance. The conventional highperformance memory system provides fast data access via a large secondary cache. But large secondary caches can be expensive, particularly in largescale parallel system ..."
Abstract

Cited by 204 (0 self)
 Add to MetaCart
that are comparable to typical hit rates of secondary caches. Also, we find that as the dataset size of the scientific workload increases the performance of streams typically improves relative to secondary cache performance, showing that streams are more scalable to large dataset sizes. 1
Applications of Graph and Hypergraph Theory in Geometry
, 2005
"... The aim of this survey is to collect and explain some geometric results whose proof uses graph or hypergraph theory. No attempt has been made to give a complete list of such results. We rather focus on typical and recent examples showing the power and limitations of the method. The topics covered in ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
include forbidden configurations, geometric constructions, saturated hypergraphs in geometry, independent sets in graphs, the regularity lemma, and VCdimension.
Results 1  10
of
386