Results 1  10
of
654,477
Hard Instances of the Constrained Discrete Logarithm Problem
"... Abstract. The discrete logarithm problem (DLP) generalizes to the constrained DLP, where the secret exponent x belongs to a set known to the attacker. The complexity of generic algorithms for solving the constrained DLP depends on the choice of the set. Motivated by cryptographic applications, we st ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
Abstract. The discrete logarithm problem (DLP) generalizes to the constrained DLP, where the secret exponent x belongs to a set known to the attacker. The complexity of generic algorithms for solving the constrained DLP depends on the choice of the set. Motivated by cryptographic applications, we
is the full and corrected version. Hard Instances of the Constrained Discrete Logarithm Problem
"... The discrete logarithm problem (DLP) generalizes to the constrained DLP, where the secret exponent x belongs to a set known to the attacker. The complexity of generic algorithms for solving the constrained DLP depends on the choice of the set. Motivated by cryptographic applications, we study sets w ..."
Abstract
 Add to MetaCart
The discrete logarithm problem (DLP) generalizes to the constrained DLP, where the secret exponent x belongs to a set known to the attacker. The complexity of generic algorithms for solving the constrained DLP depends on the choice of the set. Motivated by cryptographic applications, we study sets
Toward an instance theory of automatization
 Psychological Review
, 1988
"... This article presents a theory in which automatization is construed as the acquisition of a domainspecific knowledge base, formed of separate representations, instances, of each exposure to the task. Processing is considered automatic if it relies on retrieval of stored instances, which will occur ..."
Abstract

Cited by 613 (37 self)
 Add to MetaCart
This article presents a theory in which automatization is construed as the acquisition of a domainspecific knowledge base, formed of separate representations, instances, of each exposure to the task. Processing is considered automatic if it relies on retrieval of stored instances, which will occur
Algorithms for Quantum Computation: Discrete Logarithms and Factoring
, 1994
"... A computer is generally considered to be a universal computational device; i.e., it is believed able to simulate any physical computational device with a increase in computation time of at most a polynomial factor. It is not clear whether this is still true when quantum mechanics is taken into consi ..."
Abstract

Cited by 1103 (7 self)
 Add to MetaCart
into consideration. Several researchers, starting with David Deutsch, have developed models for quantum mechanical computers and have investigated their computational properties. This paper gives Las Vegas algorithms for finding discrete logarithms and factoring integers on a quantum computer that take a number
PolynomialTime Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer
 SIAM J. on Computing
, 1997
"... A digital computer is generally believed to be an efficient universal computing device; that is, it is believed able to simulate any physical computing device with an increase in computation time by at most a polynomial factor. This may not be true when quantum mechanics is taken into consideration. ..."
Abstract

Cited by 1268 (5 self)
 Add to MetaCart
. This paper considers factoring integers and finding discrete logarithms, two problems which are generally thought to be hard on a classical computer and which have been used as the basis of several proposed cryptosystems. Efficient randomized algorithms are given for these two problems on a hypothetical
Where the REALLY Hard Problems Are
 IN J. MYLOPOULOS AND R. REITER (EDS.), PROCEEDINGS OF 12TH INTERNATIONAL JOINT CONFERENCE ON AI (IJCAI91),VOLUME 1
, 1991
"... It is well known that for many NPcomplete problems, such as KSat, etc., typical cases are easy to solve; so that computationally hard cases must be rare (assuming P != NP). This paper shows that NPcomplete problems can be summarized by at least one "order parameter", and that the hard p ..."
Abstract

Cited by 681 (1 self)
 Add to MetaCart
It is well known that for many NPcomplete problems, such as KSat, etc., typical cases are easy to solve; so that computationally hard cases must be rare (assuming P != NP). This paper shows that NPcomplete problems can be summarized by at least one "order parameter", and that the hard
A public key cryptosystem and a signature scheme based on discrete logarithms
 Adv. in Cryptology, SpringerVerlag
, 1985
"... AbstractA new signature scheme is proposed, together with an implementation of the DiffieHellman key distribution scheme that achieves a public key cryptosystem. The security of both systems relies on the difficulty of computing discrete logarithms over finite fields. I. ..."
Abstract

Cited by 1520 (0 self)
 Add to MetaCart
AbstractA new signature scheme is proposed, together with an implementation of the DiffieHellman key distribution scheme that achieves a public key cryptosystem. The security of both systems relies on the difficulty of computing discrete logarithms over finite fields. I.
Constrained model predictive control: Stability and optimality
 AUTOMATICA
, 2000
"... Model predictive control is a form of control in which the current control action is obtained by solving, at each sampling instant, a finite horizon openloop optimal control problem, using the current state of the plant as the initial state; the optimization yields an optimal control sequence and t ..."
Abstract

Cited by 696 (15 self)
 Add to MetaCart
Model predictive control is a form of control in which the current control action is obtained by solving, at each sampling instant, a finite horizon openloop optimal control problem, using the current state of the plant as the initial state; the optimization yields an optimal control sequence
Constrained Kmeans Clustering with Background Knowledge
 In ICML
, 2001
"... Clustering is traditionally viewed as an unsupervised method for data analysis. However, in some cases information about the problem domain is available in addition to the data instances themselves. In this paper, we demonstrate how the popular kmeans clustering algorithm can be pro tably modi ed ..."
Abstract

Cited by 473 (9 self)
 Add to MetaCart
Clustering is traditionally viewed as an unsupervised method for data analysis. However, in some cases information about the problem domain is available in addition to the data instances themselves. In this paper, we demonstrate how the popular kmeans clustering algorithm can be pro tably modi ed
A Note on the Confinement Problem
, 1973
"... This not explores the problem of confining a program during its execution so that it cannot transmit information to any other program except its caller. A set of examples attempts to stake out the boundaries of the problem. Necessary conditions for a solution are stated and informally justified. ..."
Abstract

Cited by 532 (0 self)
 Add to MetaCart
This not explores the problem of confining a program during its execution so that it cannot transmit information to any other program except its caller. A set of examples attempts to stake out the boundaries of the problem. Necessary conditions for a solution are stated and informally justified.
Results 1  10
of
654,477