• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 1,681,542
Next 10 →

GROUP-WISE SPARSE CORRESPONDENCES BETWEEN IMAGES BASED ON A COMMON LABELLING APPROACH

by Albert Solé-ribalta, Gerard Sanromà, Francesc Serratosa, René Alquézar
"... Finding sparse correspondences between two images is a usual process needed for several higher-level computer vision tasks. For instance, in robot positioning, it is frequent to make use of images that the robot captures from their cameras to guide the localisation or reduce the intrinsic ambiguity ..."
Abstract - Add to MetaCart
approaches, we present a new method to compute group-wise correspondences among a set of images. Thus, pair-wise errors are compensated and better correspondences between images are obtained. These correspondences can be used as a less-noisy input for the localisation process. Group-wise correspondences

Linear spatial pyramid matching using sparse coding for image classification

by Jianchao Yang, Kai Yu, Yihong Gong, Thomas Huang - in IEEE Conference on Computer Vision and Pattern Recognition(CVPR , 2009
"... Recently SVMs using spatial pyramid matching (SPM) kernel have been highly successful in image classification. Despite its popularity, these nonlinear SVMs have a complexity O(n 2 ∼ n 3) in training and O(n) in testing, where n is the training size, implying that it is nontrivial to scaleup the algo ..."
Abstract - Cited by 488 (19 self) - Add to MetaCart
the algorithms to handle more than thousands of training images. In this paper we develop an extension of the SPM method, by generalizing vector quantization to sparse coding followed by multi-scale spatial max pooling, and propose a linear SPM kernel based on SIFT sparse codes. This new approach remarkably

LabelMe: A Database and Web-Based Tool for Image Annotation

by B. C. Russell, A. Torralba, K. P. Murphy, W. T. Freeman , 2008
"... We seek to build a large collection of images with ground truth labels to be used for object detection and recognition research. Such data is useful for supervised learning and quantitative evaluation. To achieve this, we developed a web-based tool that allows easy image annotation and instant sha ..."
Abstract - Cited by 670 (47 self) - Add to MetaCart
We seek to build a large collection of images with ground truth labels to be used for object detection and recognition research. Such data is useful for supervised learning and quantitative evaluation. To achieve this, we developed a web-based tool that allows easy image annotation and instant

Good Error-Correcting Codes based on Very Sparse Matrices

by David J.C. MacKay , 1999
"... We study two families of error-correcting codes defined in terms of very sparse matrices. "MN" (MacKay--Neal) codes are recently invented, and "Gallager codes" were first investigated in 1962, but appear to have been largely forgotten, in spite of their excellent properties. The ..."
Abstract - Cited by 741 (23 self) - Add to MetaCart
We study two families of error-correcting codes defined in terms of very sparse matrices. "MN" (MacKay--Neal) codes are recently invented, and "Gallager codes" were first investigated in 1962, but appear to have been largely forgotten, in spite of their excellent properties

Sparse Bayesian Learning and the Relevance Vector Machine

by Michael E. Tipping, Alex Smola , 2001
"... This paper introduces a general Bayesian framework for obtaining sparse solutions to regression and classication tasks utilising models linear in the parameters. Although this framework is fully general, we illustrate our approach with a particular specialisation that we denote the `relevance vec ..."
Abstract - Cited by 958 (5 self) - Add to MetaCart
This paper introduces a general Bayesian framework for obtaining sparse solutions to regression and classication tasks utilising models linear in the parameters. Although this framework is fully general, we illustrate our approach with a particular specialisation that we denote the `relevance

From Sparse Solutions of Systems of Equations to Sparse Modeling of Signals and Images

by Alfred M. Bruckstein, David L. Donoho, Michael Elad , 2007
"... A full-rank matrix A ∈ IR n×m with n < m generates an underdetermined system of linear equations Ax = b having infinitely many solutions. Suppose we seek the sparsest solution, i.e., the one with the fewest nonzero entries: can it ever be unique? If so, when? As optimization of sparsity is combin ..."
Abstract - Cited by 423 (37 self) - Add to MetaCart
is combinatorial in nature, are there efficient methods for finding the sparsest solution? These questions have been answered positively and constructively in recent years, exposing a wide variety of surprising phenomena; in particular, the existence of easily-verifiable conditions under which optimally-sparse

K-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation

by Michal Aharon, et al. , 2006
"... In recent years there has been a growing interest in the study of sparse representation of signals. Using an overcomplete dictionary that contains prototype signal-atoms, signals are described by sparse linear combinations of these atoms. Applications that use sparse representation are many and inc ..."
Abstract - Cited by 930 (41 self) - Add to MetaCart
that alternates between sparse coding of the examples based on the current dictionary and a process of updating the dictionary atoms to better fit the data. The update of the dictionary columns is combined with an update of the sparse representations, thereby accelerating convergence. The K-SVD algorithm

LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares

by Christopher C. Paige, Michael A. Saunders - ACM Trans. Math. Software , 1982
"... An iterative method is given for solving Ax ~ffi b and minU Ax- b 112, where the matrix A is large and sparse. The method is based on the bidiagonalization procedure of Golub and Kahan. It is analytically equivalent to the standard method of conjugate gradients, but possesses more favorable numerica ..."
Abstract - Cited by 649 (21 self) - Add to MetaCart
An iterative method is given for solving Ax ~ffi b and minU Ax- b 112, where the matrix A is large and sparse. The method is based on the bidiagonalization procedure of Golub and Kahan. It is analytically equivalent to the standard method of conjugate gradients, but possesses more favorable

Automatic labeling of semantic roles

by Daniel Gildea - Computational Linguistics , 2002
"... We present a system for identifying the semantic relationships, or semantic roles, filled by constituents of a sentence within a semantic frame. Various lexical and syntactic features are derived from parse trees and used to derive statistical classifiers from hand-annotated training data. 1 ..."
Abstract - Cited by 742 (15 self) - Add to MetaCart
We present a system for identifying the semantic relationships, or semantic roles, filled by constituents of a sentence within a semantic frame. Various lexical and syntactic features are derived from parse trees and used to derive statistical classifiers from hand-annotated training data. 1

Just Relax: Convex Programming Methods for Identifying Sparse Signals in Noise

by Joel A. Tropp , 2006
"... This paper studies a difficult and fundamental problem that arises throughout electrical engineering, applied mathematics, and statistics. Suppose that one forms a short linear combination of elementary signals drawn from a large, fixed collection. Given an observation of the linear combination that ..."
Abstract - Cited by 496 (2 self) - Add to MetaCart
. This paper studies a method called convex relaxation, which attempts to recover the ideal sparse signal by solving a convex program. This approach is powerful because the optimization can be completed in polynomial time with standard scientific software. The paper provides general conditions which ensure
Next 10 →
Results 1 - 10 of 1,681,542
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University