Results 1 - 10
of
52,288
LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares
- ACM Trans. Math. Software
, 1982
"... An iterative method is given for solving Ax ~ffi b and minU Ax- b 112, where the matrix A is large and sparse. The method is based on the bidiagonalization procedure of Golub and Kahan. It is analytically equivalent to the standard method of conjugate gradients, but possesses more favorable numerica ..."
Abstract
-
Cited by 649 (21 self)
- Add to MetaCart
numerical properties. Reliable stopping criteria are derived, along with estimates of standard errors for x and the condition number of A. These are used in the FORTRAN implementation of the method, subroutine LSQR. Numerical tests are described comparing I~QR with several other conjugate
A New Extension of the Kalman Filter to Nonlinear Systems
, 1997
"... The Kalman filter(KF) is one of the most widely used methods for tracking and estimation due to its simplicity, optimality, tractability and robustness. However, the application of the KF to nonlinear systems can be difficult. The most common approach is to use the Extended Kalman Filter (EKF) which ..."
Abstract
-
Cited by 747 (6 self)
- Add to MetaCart
that it is difficult to implement, difficult to tune, and only reliable for systems which are almost linear on the time scale of the update intervals. In this paper a new linear estimator is developed and demonstrated. Using the principle that a set of discretely sampled points can be used to parameterise mean
Usability Analysis of Visual Programming Environments: a `cognitive dimensions' framework
- JOURNAL OF VISUAL LANGUAGES AND COMPUTING
, 1996
"... The cognitive dimensions framework is a broad-brush evaluation technique for interactive devices and for non-interactive notations. It sets out a small vocabulary of terms designed to capture the cognitively-relevant aspects of structure, and shows how they can be traded off against each other. T ..."
Abstract
-
Cited by 510 (13 self)
- Add to MetaCart
The cognitive dimensions framework is a broad-brush evaluation technique for interactive devices and for non-interactive notations. It sets out a small vocabulary of terms designed to capture the cognitively-relevant aspects of structure, and shows how they can be traded off against each other
Image registration methods: a survey
- IMAGE AND VISION COMPUTING
, 2003
"... This paper aims to present a review of recent as well as classic image registration methods. Image registration is the process of overlaying images (two or more) of the same scene taken at different times, from different viewpoints, and/or by different sensors. The registration geometrically align t ..."
Abstract
-
Cited by 734 (9 self)
- Add to MetaCart
This paper aims to present a review of recent as well as classic image registration methods. Image registration is the process of overlaying images (two or more) of the same scene taken at different times, from different viewpoints, and/or by different sensors. The registration geometrically align two images (the reference and sensed images). The reviewed approaches are classified according to their nature (areabased and feature-based) and according to four basic steps of image registration procedure: feature detection, feature matching, mapping function design, and image transformation and resampling. Main contributions, advantages, and drawbacks of the methods are mentioned in the paper. Problematic issues of image registration and outlook for the future research are discussed too. The major goal of the paper is to provide a comprehensive reference source for the researchers involved in image registration, regardless of particular application areas.
Qualitative process theory
- MIT AI Lab Memo
, 1982
"... Objects move, collide, flow, bend, heat up, cool down, stretch, compress. and boil. These and other things that cause changes in objects over time are intuitively characterized as processes. To understand commonsense physical reasoning and make programs that interact with the physical world as well ..."
Abstract
-
Cited by 884 (92 self)
- Add to MetaCart
Objects move, collide, flow, bend, heat up, cool down, stretch, compress. and boil. These and other things that cause changes in objects over time are intuitively characterized as processes. To understand commonsense physical reasoning and make programs that interact with the physical world as well as people do we must understand qualitative reasoning about processes, when they will occur, their effects, and when they will stop. Qualitative process theory defines a simple notion of physical process that appears useful as a language in which to write dynamical theories. Reasoning about processes also motivates a new qualitative representation for quantity in terms of inequalities, called the quantity space. This paper describes the basic concepts of qualitative process theory, several different kinds of reasoning that can be performed with them, and discusses its implications for causal reasoning. Several extended examples illustrate the utility of the theory, including figuring out that a boiler can blow up, that an oscillator with friction will eventually stop, and how to say that you can pull with a string, but not push with it. 1
The Lumigraph
- In Proceedings of SIGGRAPH 96
, 1996
"... This paper discusses a new method for capturing the complete appearanceof both synthetic and real world objects and scenes, representing this information, and then using this representation to render images of the object from new camera positions. Unlike the shape capture process traditionally used ..."
Abstract
-
Cited by 1034 (43 self)
- Add to MetaCart
This paper discusses a new method for capturing the complete appearanceof both synthetic and real world objects and scenes, representing this information, and then using this representation to render images of the object from new camera positions. Unlike the shape capture process traditionally used in computer vision and the rendering process traditionally used in computer graphics, our approach does not rely on geometric representations. Instead we sample and reconstruct a 4D function, which we call a Lumigraph. The Lumigraph is a subset of the complete plenoptic function that describes the flow of light at all positions in all directions. With the Lumigraph, new images of the object can be generated very quickly, independent of the geometric or illumination complexity of the scene or object. The paper discusses a complete working system including the capture of samples, the construction of the Lumigraph, and the subsequent rendering of images from this new representation. 1
Planning Algorithms
, 2004
"... This book presents a unified treatment of many different kinds of planning algorithms. The subject lies at the crossroads between robotics, control theory, artificial intelligence, algorithms, and computer graphics. The particular subjects covered include motion planning, discrete planning, planning ..."
Abstract
-
Cited by 1108 (51 self)
- Add to MetaCart
This book presents a unified treatment of many different kinds of planning algorithms. The subject lies at the crossroads between robotics, control theory, artificial intelligence, algorithms, and computer graphics. The particular subjects covered include motion planning, discrete planning, planning under uncertainty, sensor-based planning, visibility, decision-theoretic planning, game theory, information spaces, reinforcement learning, nonlinear systems, trajectory planning, nonholonomic planning, and kinodynamic planning.
Results 1 - 10
of
52,288