Results 1  10
of
1,434,599
Graph Cuts is a MaxProduct Algorithm
"... The maximum a posteriori (MAP) configuration of binary variable models with submodular graphstructured energy functions can be found efficiently and exactly by graph cuts. Maxproduct belief propagation (MP) has been shown to be suboptimal on this class of energy functions by a canonical counterexa ..."
Abstract

Cited by 6 (1 self)
 Add to MetaCart
The maximum a posteriori (MAP) configuration of binary variable models with submodular graphstructured energy functions can be found efficiently and exactly by graph cuts. Maxproduct belief propagation (MP) has been shown to be suboptimal on this class of energy functions by a canonical
Interpreting Graph Cuts as a MaxProduct Algorithm
"... The maximum a posteriori (MAP) configuration of binary variable models with submodular graphstructured energy functions can be found efficiently and exactly by graph cuts. Maxproduct belief propagation (MP) has been shown to be suboptimal on this class of energy functions by a canonical counterexa ..."
Abstract

Cited by 2 (2 self)
 Add to MetaCart
The maximum a posteriori (MAP) configuration of binary variable models with submodular graphstructured energy functions can be found efficiently and exactly by graph cuts. Maxproduct belief propagation (MP) has been shown to be suboptimal on this class of energy functions by a canonical
On the Optimality of Solutions of the MaxProduct Belief Propagation Algorithm in Arbitrary Graphs
, 2001
"... Graphical models, suchasBayesian networks and Markov random fields, represent statistical dependencies of variables by a graph. The maxproduct "belief propagation" algorithm is a localmessage passing algorithm on this graph that is known to converge to a unique fixed point when the gra ..."
Abstract

Cited by 242 (15 self)
 Add to MetaCart
Graphical models, suchasBayesian networks and Markov random fields, represent statistical dependencies of variables by a graph. The maxproduct "belief propagation" algorithm is a localmessage passing algorithm on this graph that is known to converge to a unique fixed point when
Factor Graphs and the SumProduct Algorithm
 IEEE TRANSACTIONS ON INFORMATION THEORY
, 1998
"... A factor graph is a bipartite graph that expresses how a "global" function of many variables factors into a product of "local" functions. Factor graphs subsume many other graphical models including Bayesian networks, Markov random fields, and Tanner graphs. Following one simple c ..."
Abstract

Cited by 1787 (72 self)
 Add to MetaCart
computational rule, the sumproduct algorithm operates in factor graphs to computeeither exactly or approximatelyvarious marginal functions by distributed messagepassing in the graph. A wide variety of algorithms developed in artificial intelligence, signal processing, and digital communications can
"GrabCut”  interactive foreground extraction using iterated graph cuts
 ACM TRANS. GRAPH
, 2004
"... The problem of efficient, interactive foreground/background segmentation in still images is of great practical importance in image editing. Classical image segmentation tools use either texture (colour) information, e.g. Magic Wand, or edge (contrast) information, e.g. Intelligent Scissors. Recently ..."
Abstract

Cited by 1140 (36 self)
 Add to MetaCart
. Recently, an approach based on optimization by graphcut has been developed which successfully combines both types of information. In this paper we extend the graphcut approach in three respects. First, we have developed a more powerful, iterative version of the optimisation. Secondly, the power
Fast approximate energy minimization via graph cuts
 IEEE Transactions on Pattern Analysis and Machine Intelligence
, 2001
"... In this paper we address the problem of minimizing a large class of energy functions that occur in early vision. The major restriction is that the energy function’s smoothness term must only involve pairs of pixels. We propose two algorithms that use graph cuts to compute a local minimum even when v ..."
Abstract

Cited by 2127 (61 self)
 Add to MetaCart
In this paper we address the problem of minimizing a large class of energy functions that occur in early vision. The major restriction is that the energy function’s smoothness term must only involve pairs of pixels. We propose two algorithms that use graph cuts to compute a local minimum even when
Improved Approximation Algorithms for Maximum Cut and Satisfiability Problems Using Semidefinite Programming
 Journal of the ACM
, 1995
"... We present randomized approximation algorithms for the maximum cut (MAX CUT) and maximum 2satisfiability (MAX 2SAT) problems that always deliver solutions of expected value at least .87856 times the optimal value. These algorithms use a simple and elegant technique that randomly rounds the solution ..."
Abstract

Cited by 1231 (13 self)
 Add to MetaCart
We present randomized approximation algorithms for the maximum cut (MAX CUT) and maximum 2satisfiability (MAX 2SAT) problems that always deliver solutions of expected value at least .87856 times the optimal value. These algorithms use a simple and elegant technique that randomly rounds
What energy functions can be minimized via graph cuts?
 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
, 2004
"... In the last few years, several new algorithms based on graph cuts have been developed to solve energy minimization problems in computer vision. Each of these techniques constructs a graph such that the minimum cut on the graph also minimizes the energy. Yet, because these graph constructions are co ..."
Abstract

Cited by 1047 (23 self)
 Add to MetaCart
In the last few years, several new algorithms based on graph cuts have been developed to solve energy minimization problems in computer vision. Each of these techniques constructs a graph such that the minimum cut on the graph also minimizes the energy. Yet, because these graph constructions
Graphcut textures: Image and video synthesis using graph cuts
 ACM Transactions on Graphics, SIGGRAPH 2003
, 2003
"... This banner was generated by merging the source images in Figure 6 using our interactive texture merging technique. In this paper we introduce a new algorithm for image and video texture synthesis. In our approach, patch regions from a sample image or video are transformed and copied to the output a ..."
Abstract

Cited by 492 (9 self)
 Add to MetaCart
and then stitched together along optimal seams to generate a new (and typically larger) output. In contrast to other techniques, the size of the patch is not chosen apriori, but instead a graph cut technique is used to determine the optimal patch region for any given offset between the input and output texture
An Experimental Comparison of MinCut/MaxFlow Algorithms for Energy Minimization in Vision
 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
, 2001
"... After [10, 15, 12, 2, 4] minimum cut/maximum flow algorithms on graphs emerged as an increasingly useful tool for exact or approximate energy minimization in lowlevel vision. The combinatorial optimization literature provides many mincut/maxflow algorithms with different polynomial time compl ..."
Abstract

Cited by 1311 (54 self)
 Add to MetaCart
After [10, 15, 12, 2, 4] minimum cut/maximum flow algorithms on graphs emerged as an increasingly useful tool for exact or approximate energy minimization in lowlevel vision. The combinatorial optimization literature provides many mincut/maxflow algorithms with different polynomial time
Results 1  10
of
1,434,599