Results 1  10
of
393,111
Snakes, Shapes, and Gradient Vector Flow
 IEEE TRANSACTIONS ON IMAGE PROCESSING
, 1998
"... Snakes, or active contours, are used extensively in computer vision and image processing applications, particularly to locate object boundaries. Problems associated with initialization and poor convergence to boundary concavities, however, have limited their utility. This paper presents a new extern ..."
Abstract

Cited by 743 (16 self)
 Add to MetaCart
external force for active contours, largely solving both problems. This external force, which we call gradient vector flow (GVF), is computed as a diffusion of the gradient vectors of a graylevel or binary edge map derived from the image. It differs fundamentally from traditional snake external forces
Robust Anisotropic Diffusion
, 1998
"... Relations between anisotropic diffusion and robust statistics are described in this paper. Specifically, we show that anisotropic diffusion can be seen as a robust estimation procedure that estimates a piecewise smooth image from a noisy input image. The "edgestopping" function in the ani ..."
Abstract

Cited by 362 (17 self)
 Add to MetaCart
in the anisotropic diffusion equation is closely related to the error norm and influence function in the robust estimation framework. This connection leads to a new "edgestopping" function based on Tukey's biweight robust estimator, that preserves sharper boundaries than previous formulations
Implicit Fairing of Irregular Meshes using Diffusion and Curvature Flow
, 1999
"... In this paper, we develop methods to rapidly remove rough features from irregularly triangulated data intended to portray a smooth surface. The main task is to remove undesirable noise and uneven edges while retaining desirable geometric features. The problem arises mainly when creating highfidelit ..."
Abstract

Cited by 553 (24 self)
 Add to MetaCart
fidelity computer graphics objects using imperfectlymeasured data from the real world. Our approach contains three novel features: an implicit integration method to achieve efficiency, stability, and large timesteps; a scaledependent Laplacian operator to improve the diffusion process; and finally, a robust
Gradient flows in metric spaces and in the space of probability measures
 LECTURES IN MATHEMATICS ETH ZÜRICH, BIRKHÄUSER VERLAG
, 2005
"... ..."
Histograms of Oriented Gradients for Human Detection
 In CVPR
, 2005
"... We study the question of feature sets for robust visual object recognition, adopting linear SVM based human detection as a test case. After reviewing existing edge and gradient based descriptors, we show experimentally that grids of Histograms of Oriented Gradient (HOG) descriptors significantly out ..."
Abstract

Cited by 3678 (9 self)
 Add to MetaCart
We study the question of feature sets for robust visual object recognition, adopting linear SVM based human detection as a test case. After reviewing existing edge and gradient based descriptors, we show experimentally that grids of Histograms of Oriented Gradient (HOG) descriptors significantly
Directed Diffusion for Wireless Sensor Networking
 IEEE/ACM Transactions on Networking
, 2003
"... Advances in processor, memory and radio technology will enable small and cheap nodes capable of sensing, communication and computation. Networks of such nodes can coordinate to perform distributed sensing of environmental phenomena. In this paper, we explore the directed diffusion paradigm for such ..."
Abstract

Cited by 658 (9 self)
 Add to MetaCart
for such coordination. Directed diffusion is datacentric in that all communication is for named data. All nodes in a directed diffusionbased network are applicationaware. This enables diffusion to achieve energy savings by selecting empirically good paths and by caching and processing data innetwork (e.g., data
Determining Optical Flow
 ARTIFICIAL INTELLIGENCE
, 1981
"... Optical flow cannot be computed locally, since only one independent measurement is available from the image sequence at a point, while the flow velocity has two components. A second constraint is needed. A method for finding the optical flow pattern is presented which assumes that the apparent veloc ..."
Abstract

Cited by 2379 (9 self)
 Add to MetaCart
Optical flow cannot be computed locally, since only one independent measurement is available from the image sequence at a point, while the flow velocity has two components. A second constraint is needed. A method for finding the optical flow pattern is presented which assumes that the apparent
Network information flow
 IEEE TRANS. INFORM. THEORY
, 2000
"... We introduce a new class of problems called network information flow which is inspired by computer network applications. Consider a pointtopoint communication network on which a number of information sources are to be mulitcast to certain sets of destinations. We assume that the information source ..."
Abstract

Cited by 1961 (24 self)
 Add to MetaCart
We introduce a new class of problems called network information flow which is inspired by computer network applications. Consider a pointtopoint communication network on which a number of information sources are to be mulitcast to certain sets of destinations. We assume that the information
Optimization Flow Control, I: Basic Algorithm and Convergence
 IEEE/ACM TRANSACTIONS ON NETWORKING
, 1999
"... We propose an optimization approach to flow control where the objective is to maximize the aggregate source utility over their transmission rates. We view network links and sources as processors of a distributed computation system to solve the dual problem using gradient projection algorithm. In thi ..."
Abstract

Cited by 690 (64 self)
 Add to MetaCart
We propose an optimization approach to flow control where the objective is to maximize the aggregate source utility over their transmission rates. We view network links and sources as processors of a distributed computation system to solve the dual problem using gradient projection algorithm
Fronts propagating with curvature dependent speed: algorithms based on Hamilton–Jacobi formulations
 Journal of Computational Physics
, 1988
"... We devise new numerical algorithms, called PSC algorithms, for following fronts propagating with curvaturedependent speed. The speed may be an arbitrary function of curvature, and the front can also be passively advected by an underlying flow. These algorithms approximate the equations of motion, w ..."
Abstract

Cited by 1183 (64 self)
 Add to MetaCart
We devise new numerical algorithms, called PSC algorithms, for following fronts propagating with curvaturedependent speed. The speed may be an arbitrary function of curvature, and the front can also be passively advected by an underlying flow. These algorithms approximate the equations of motion
Results 1  10
of
393,111