Results 1  10
of
2,101,269
GoalDirected Equation Solving”
"... Solving equations in equational Hornclause theories is a programming paradigm that combines logic programming and functional programming in a clean manner. Languages like E&LOG, SLOG and RITE, express programs as rewrite rules and use narrowing to solve goals expressed as equations. In this p ..."
Abstract
 Add to MetaCart
. In this paper, we express equational goal solving by means of a logic program that simulates rewriting of terms. Our goaldirected equation solving procedure is based on “directed goals”, and combines narrowing with a more topdown approach. We also show how to incorporate a notion of operator derivability
Goaldirected Requirements Acquisition
 SCIENCE OF COMPUTER PROGRAMMING
, 1993
"... Requirements analysis includes a preliminary acquisition step where a global model for the specification of the system and its environment is elaborated. This model, called requirements model, involves concepts that are currently not supported by existing formal specification languages, such as goal ..."
Abstract

Cited by 572 (17 self)
 Add to MetaCart
, such as goals to be achieved, agents to be assigned, alternatives to be negotiated, etc. The paper presents an approach to requirements acquisition which is driven by such higherlevel concepts. Requirements models are acquired as instances of a conceptual metamodel. The latter can be represented as a graph
Cognitive load during problem solving: effects on learning
 COGNITIVE SCIENCE
, 1988
"... Considerable evidence indicates that domain specific knowledge in the form of schemes is the primary factor distinguishing experts from novices in problemsolving skill. Evidence that conventional problemsolving activity is not effective in schema acquisition is also accumulating. It is suggested t ..."
Abstract

Cited by 603 (13 self)
 Add to MetaCart
Considerable evidence indicates that domain specific knowledge in the form of schemes is the primary factor distinguishing experts from novices in problemsolving skill. Evidence that conventional problemsolving activity is not effective in schema acquisition is also accumulating. It is suggested
The selfduality equations on a Riemann surface
 Proc. Lond. Math. Soc., III. Ser
, 1987
"... In this paper we shall study a special class of solutions of the selfdual YangMills equations. The original selfduality equations which arose in mathematical physics were defined on Euclidean 4space. The physically relevant solutions were the ones with finite action—the socalled 'instanton ..."
Abstract

Cited by 524 (6 self)
 Add to MetaCart
In this paper we shall study a special class of solutions of the selfdual YangMills equations. The original selfduality equations which arose in mathematical physics were defined on Euclidean 4space. The physically relevant solutions were the ones with finite action—the socalled &apos
The Weakest Failure Detector for Solving Consensus
, 1996
"... We determine what information about failures is necessary and sufficient to solve Consensus in asynchronous distributed systems subject to crash failures. In [CT91], it is shown that 3W, a failure detector that provides surprisingly little information about which processes have crashed, is sufficien ..."
Abstract

Cited by 492 (21 self)
 Add to MetaCart
We determine what information about failures is necessary and sufficient to solve Consensus in asynchronous distributed systems subject to crash failures. In [CT91], it is shown that 3W, a failure detector that provides surprisingly little information about which processes have crashed
For Most Large Underdetermined Systems of Linear Equations the Minimal ℓ1norm Solution is also the Sparsest Solution
 Comm. Pure Appl. Math
, 2004
"... We consider linear equations y = Φα where y is a given vector in R n, Φ is a given n by m matrix with n < m ≤ An, and we wish to solve for α ∈ R m. We suppose that the columns of Φ are normalized to unit ℓ 2 norm 1 and we place uniform measure on such Φ. We prove the existence of ρ = ρ(A) so that ..."
Abstract

Cited by 560 (10 self)
 Add to MetaCart
We consider linear equations y = Φα where y is a given vector in R n, Φ is a given n by m matrix with n < m ≤ An, and we wish to solve for α ∈ R m. We suppose that the columns of Φ are normalized to unit ℓ 2 norm 1 and we place uniform measure on such Φ. We prove the existence of ρ = ρ(A) so
GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems
 SIAM J. SCI. STAT. COMPUT
, 1986
"... We present an iterative method for solving linear systems, which has the property ofminimizing at every step the norm of the residual vector over a Krylov subspace. The algorithm is derived from the Arnoldi process for constructing an l2orthogonal basis of Krylov subspaces. It can be considered a ..."
Abstract

Cited by 2046 (40 self)
 Add to MetaCart
We present an iterative method for solving linear systems, which has the property ofminimizing at every step the norm of the residual vector over a Krylov subspace. The algorithm is derived from the Arnoldi process for constructing an l2orthogonal basis of Krylov subspaces. It can be considered
Equationbased congestion control for unicast applications
 SIGCOMM '00
, 2000
"... This paper proposes a mechanism for equationbased congestion control for unicast traffic. Most besteffort traffic in the current Internet is wellserved by the dominant transport protocol, TCP. However, traffic such as besteffort unicast streaming multimedia could find use for a TCPfriendly cong ..."
Abstract

Cited by 832 (29 self)
 Add to MetaCart
This paper proposes a mechanism for equationbased congestion control for unicast traffic. Most besteffort traffic in the current Internet is wellserved by the dominant transport protocol, TCP. However, traffic such as besteffort unicast streaming multimedia could find use for a TCP
LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares
 ACM Trans. Math. Software
, 1982
"... An iterative method is given for solving Ax ~ffi b and minU Ax b 112, where the matrix A is large and sparse. The method is based on the bidiagonalization procedure of Golub and Kahan. It is analytically equivalent to the standard method of conjugate gradients, but possesses more favorable numerica ..."
Abstract

Cited by 649 (21 self)
 Add to MetaCart
An iterative method is given for solving Ax ~ffi b and minU Ax b 112, where the matrix A is large and sparse. The method is based on the bidiagonalization procedure of Golub and Kahan. It is analytically equivalent to the standard method of conjugate gradients, but possesses more favorable
Results 1  10
of
2,101,269