Results 1  10
of
2,372
Author's Accepted Manuscript
"... Generic probabilistic prototype based classification of vectorial and proximity data ..."
Abstract
 Add to MetaCart
Generic probabilistic prototype based classification of vectorial and proximity data
Community detection in graphs
, 2009
"... The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices of th ..."
Abstract

Cited by 801 (1 self)
 Add to MetaCart
The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices of the same cluster and comparatively few edges joining vertices of different clusters. Such
Convex Analysis
, 1970
"... In this book we aim to present, in a unified framework, a broad spectrum of mathematical theory that has grown in connection with the study of problems of optimization, equilibrium, control, and stability of linear and nonlinear systems. The title Variational Analysis reflects this breadth. For a lo ..."
Abstract

Cited by 5350 (67 self)
 Add to MetaCart
In this book we aim to present, in a unified framework, a broad spectrum of mathematical theory that has grown in connection with the study of problems of optimization, equilibrium, control, and stability of linear and nonlinear systems. The title Variational Analysis reflects this breadth. For a long time, ‘variational ’ problems have been identified mostly with the ‘calculus of variations’. In that venerable subject, built around the minimization of integral functionals, constraints were relatively simple and much of the focus was on infinitedimensional function spaces. A major theme was the exploration of variations around a point, within the bounds imposed by the constraints, in order to help characterize solutions and portray them in terms of ‘variational principles’. Notions of perturbation, approximation and even generalized differentiability were extensively investigated. Variational theory progressed also to the study of socalled stationary points, critical points, and other indications of singularity that a point might have relative to its neighbors, especially in association with existence theorems for differential equations.
A firstorder primaldual algorithm for convex problems with applications to imaging
, 2010
"... In this paper we study a firstorder primaldual algorithm for convex optimization problems with known saddlepoint structure. We prove convergence to a saddlepoint with rate O(1/N) in finite dimensions, which is optimal for the complete class of nonsmooth problems we are considering in this paper ..."
Abstract

Cited by 435 (20 self)
 Add to MetaCart
In this paper we study a firstorder primaldual algorithm for convex optimization problems with known saddlepoint structure. We prove convergence to a saddlepoint with rate O(1/N) in finite dimensions, which is optimal for the complete class of nonsmooth problems we are considering in this paper. We further show accelerations of the proposed algorithm to yield optimal rates on easier problems. In particular we show that we can achieve O(1/N 2) convergence on problems, where the primal or the dual objective is uniformly convex, and we can show linear convergence, i.e. O(1/e N) on problems where both are uniformly convex. The wide applicability of the proposed algorithm is demonstrated on several imaging problems such as image denoising, image deconvolution, image inpainting, motion estimation and image segmentation. 1
Searching in metric spaces
, 2001
"... The problem of searching the elements of a set that are close to a given query element under some similarity criterion has a vast number of applications in many branches of computer science, from pattern recognition to textual and multimedia information retrieval. We are interested in the rather gen ..."
Abstract

Cited by 432 (38 self)
 Add to MetaCart
The problem of searching the elements of a set that are close to a given query element under some similarity criterion has a vast number of applications in many branches of computer science, from pattern recognition to textual and multimedia information retrieval. We are interested in the rather general case where the similarity criterion defines a metric space, instead of the more restricted case of a vector space. Many solutions have been proposed in different areas, in many cases without crossknowledge. Because of this, the same ideas have been reconceived several times, and very different presentations have been given for the same approaches. We present some basic results that explain the intrinsic difficulty of the search problem. This includes a quantitative definition of the elusive concept of “intrinsic dimensionality. ” We also present a unified
An evolutionary trace method defines binding surfaces common to protein families
 J. Mol. Biol
, 1996
"... 1Departments of Cellular and Xray or NMR structures of proteins are often derived without their Molecular Pharmacology and ligands, and even when the structure of a full complex is available, the area Medicine and of contact that is functionally and energetically significant may be a 2Department of ..."
Abstract

Cited by 348 (30 self)
 Add to MetaCart
of Pharmaceutical Chemistry specialized subset of the geometric interface deduced from the spatial University of California proximity between ligands. Thus, even after a structure is solved, it San Francisco remains a major theoretical and experimental goal to localize protein
Dissimilaritybased classification for vectorial representations
"... General dissimilaritybased learning approaches have been proposed for dissimilarity data sets [11, 10]. They arise in problems in which direct comparisons of objects are made, e.g. by computing pairwise distances between images, spectra, graphs or strings. In this paper, we study under which circum ..."
Abstract
 Add to MetaCart
General dissimilaritybased learning approaches have been proposed for dissimilarity data sets [11, 10]. They arise in problems in which direct comparisons of objects are made, e.g. by computing pairwise distances between images, spectra, graphs or strings. In this paper, we study under which
Optimal cluster preserving embedding of nonmetric proximity data
 IEEE Trans. Pattern Analysis and Machine Intelligence
, 2003
"... Abstract—For several major applications of data analysis, objects are often not represented as feature vectors in a vector space, but rather by a matrix gathering pairwise proximities. Such pairwise data often violates metricity and, therefore, cannot be naturally embedded in a vector space. Concern ..."
Abstract

Cited by 53 (4 self)
 Add to MetaCart
description of the clusters by way of cluster prototypes, the generic extension of the grouping procedure to a discriminative prediction rule, and the applicability of standard preprocessing methods like denoising or dimensionality reduction. Index Terms—Clustering, pairwise proximity data, cost function
Results 1  10
of
2,372