Results 1  10
of
26,004
Genetic Algorithms for Multiobjective Optimization: Formulation, Discussion and Generalization
, 1993
"... The paper describes a rankbased fitness assignment method for Multiple Objective Genetic Algorithms (MOGAs). Conventional niche formation methods are extended to this class of multimodal problems and theory for setting the niche size is presented. The fitness assignment method is then modified to a ..."
Abstract

Cited by 610 (15 self)
 Add to MetaCart
to allow direct intervention of an external decision maker (DM). Finally, the MOGA is generalised further: the genetic algorithm is seen as the optimizing element of a multiobjective optimization loop, which also comprises the DM. It is the interaction between the two that leads to the determination of a
Evolutionary Algorithms for Multiobjective Optimization
, 2002
"... Multiple, often conflicting objectives arise naturally in most realworld optimization scenarios. As evolutionary algorithms possess several characteristics due to which they are well suited to this type of problem, evolutionbased methods have been used for multiobjective optimization for more than ..."
Abstract

Cited by 436 (14 self)
 Add to MetaCart
Multiple, often conflicting objectives arise naturally in most realworld optimization scenarios. As evolutionary algorithms possess several characteristics due to which they are well suited to this type of problem, evolutionbased methods have been used for multiobjective optimization for more
Multiobjective Optimization Using Nondominated Sorting in Genetic Algorithms
 Evolutionary Computation
, 1994
"... In trying to solve multiobjective optimization problems, many traditional methods scalarize the objective vector into a single objective. In those cases, the obtained solution is highly sensitive to the weight vector used in the scalarization process and demands the user to have knowledge about t ..."
Abstract

Cited by 524 (4 self)
 Add to MetaCart
the underlying problem. Moreover, in solving multiobjective problems, designers may be interested in a set of Paretooptimal points, instead of a single point. Since genetic algorithms(GAs) work with a population of points, it seems natural to use GAs in multiobjective optimization problems to capture a
Comparison of Multiobjective Evolutionary Algorithms: Empirical Results
, 2000
"... In this paper, we provide a systematic comparison of various evolutionary approaches to multiobjective optimization using six carefully chosen test functions. Each test function involves a particular feature that is known to cause difficulty in the evolutionary optimization process, mainly in conver ..."
Abstract

Cited by 605 (39 self)
 Add to MetaCart
, the experimental results indicate a hierarchy of the algorithms under consideration. Furthermore, the emerging effects are evidence that the suggested test functions provide sufficient complexity to compare multiobjective optimizers. Finally, elitism is shown to be an important factor for improving evolutionary
A Fast and Elitist MultiObjective Genetic Algorithm: NSGAII
, 2000
"... Multiobjective evolutionary algorithms which use nondominated sorting and sharing have been mainly criticized for their (i) O(MN computational complexity (where M is the number of objectives and N is the population size), (ii) nonelitism approach, and (iii) the need for specifying a sharing param ..."
Abstract

Cited by 1707 (58 self)
 Add to MetaCart
Multiobjective evolutionary algorithms which use nondominated sorting and sharing have been mainly criticized for their (i) O(MN computational complexity (where M is the number of objectives and N is the population size), (ii) nonelitism approach, and (iii) the need for specifying a sharing
A Niched Pareto Genetic Algorithm for Multiobjective Optimization
 IN PROCEEDINGS OF THE FIRST IEEE CONFERENCE ON EVOLUTIONARY COMPUTATION, IEEE WORLD CONGRESS ON COMPUTATIONAL INTELLIGENCE
, 1994
"... Many, if not most, optimization problems have multiple objectives. Historically, multiple objectives have been combined ad hoc to form a scalar objective function, usually through a linear combination (weighted sum) of the multiple attributes, or by turning objectives into constraints. The genetic a ..."
Abstract

Cited by 395 (6 self)
 Add to MetaCart
Many, if not most, optimization problems have multiple objectives. Historically, multiple objectives have been combined ad hoc to form a scalar objective function, usually through a linear combination (weighted sum) of the multiple attributes, or by turning objectives into constraints. The genetic
Planning Algorithms
, 2004
"... This book presents a unified treatment of many different kinds of planning algorithms. The subject lies at the crossroads between robotics, control theory, artificial intelligence, algorithms, and computer graphics. The particular subjects covered include motion planning, discrete planning, planning ..."
Abstract

Cited by 1108 (51 self)
 Add to MetaCart
This book presents a unified treatment of many different kinds of planning algorithms. The subject lies at the crossroads between robotics, control theory, artificial intelligence, algorithms, and computer graphics. The particular subjects covered include motion planning, discrete planning
Multiobjective Evolutionary Algorithms: Analyzing the StateoftheArt
, 2000
"... Solving optimization problems with multiple (often conflicting) objectives is, generally, a very difficult goal. Evolutionary algorithms (EAs) were initially extended and applied during the mideighties in an attempt to stochastically solve problems of this generic class. During the past decade, ..."
Abstract

Cited by 424 (7 self)
 Add to MetaCart
Solving optimization problems with multiple (often conflicting) objectives is, generally, a very difficult goal. Evolutionary algorithms (EAs) were initially extended and applied during the mideighties in an attempt to stochastically solve problems of this generic class. During the past decade
Constrained model predictive control: Stability and optimality
 AUTOMATICA
, 2000
"... Model predictive control is a form of control in which the current control action is obtained by solving, at each sampling instant, a finite horizon openloop optimal control problem, using the current state of the plant as the initial state; the optimization yields an optimal control sequence and t ..."
Abstract

Cited by 696 (15 self)
 Add to MetaCart
Model predictive control is a form of control in which the current control action is obtained by solving, at each sampling instant, a finite horizon openloop optimal control problem, using the current state of the plant as the initial state; the optimization yields an optimal control sequence
Genetic Programming
, 1997
"... Introduction Genetic programming is a domainindependent problemsolving approach in which computer programs are evolved to solve, or approximately solve, problems. Genetic programming is based on the Darwinian principle of reproduction and survival of the fittest and analogs of naturally occurring ..."
Abstract

Cited by 1051 (12 self)
 Add to MetaCart
Introduction Genetic programming is a domainindependent problemsolving approach in which computer programs are evolved to solve, or approximately solve, problems. Genetic programming is based on the Darwinian principle of reproduction and survival of the fittest and analogs of naturally occurring
Results 1  10
of
26,004