Results 1  10
of
157,858
Adaptive Fuzzy Neural Trees
 Advances in Intelligent Data Analysis, Proceedings of the IDA95 Symposium, volume I
, 1995
"... We propose Adaptive Fuzzy Neural Trees as an appropriate tool for intelligent data analysis, comprehension, and prediction. Instead of using a single technique Adaptive Fuzzy Neural Trees as a mixture of paradigms combine the main advantages of neural networks, decision trees, and fuzzy logic. Like ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
We propose Adaptive Fuzzy Neural Trees as an appropriate tool for intelligent data analysis, comprehension, and prediction. Instead of using a single technique Adaptive Fuzzy Neural Trees as a mixture of paradigms combine the main advantages of neural networks, decision trees, and fuzzy logic. Like
Probabilistic PartofSpeech Tagging Using Decision Trees
, 1994
"... In this paper, a new probabilistic tagging method is presented which avoids problems that Markov Model based taggers face, when they have to estimate transition probabilities from sparse data. In this tagging method, transition probabilities are estimated using a decision tree. Based on this method, ..."
Abstract

Cited by 1009 (9 self)
 Add to MetaCart
In this paper, a new probabilistic tagging method is presented which avoids problems that Markov Model based taggers face, when they have to estimate transition probabilities from sparse data. In this tagging method, transition probabilities are estimated using a decision tree. Based on this method
Mtree: An Efficient Access Method for Similarity Search in Metric Spaces
, 1997
"... A new access meth d, called Mtree, is proposed to organize and search large data sets from a generic "metric space", i.e. whE4 object proximity is only defined by a distance function satisfyingth positivity, symmetry, and triangle inequality postulates. We detail algorith[ for insertion o ..."
Abstract

Cited by 652 (38 self)
 Add to MetaCart
A new access meth d, called Mtree, is proposed to organize and search large data sets from a generic "metric space", i.e. whE4 object proximity is only defined by a distance function satisfyingth positivity, symmetry, and triangle inequality postulates. We detail algorith[ for insertion
Greedy Function Approximation: A Gradient Boosting Machine
 Annals of Statistics
, 2000
"... Function approximation is viewed from the perspective of numerical optimization in function space, rather than parameter space. A connection is made between stagewise additive expansions and steepest{descent minimization. A general gradient{descent \boosting" paradigm is developed for additi ..."
Abstract

Cited by 951 (12 self)
 Add to MetaCart
additive components are regression trees, and tools for interpreting such \TreeBoost" models are presented. Gradient boosting of regression trees produces competitive, highly robust, interpretable procedures for both regression and classication, especially appropriate for mining less than clean
Particle swarm optimization
, 1995
"... eberhart @ engr.iupui.edu A concept for the optimization of nonlinear functions using particle swarm methodology is introduced. The evolution of several paradigms is outlined, and an implementation of one of the paradigms is discussed. Benchmark testing of the paradigm is described, and applications ..."
Abstract

Cited by 3535 (22 self)
 Add to MetaCart
, and applications, including nonlinear function optimization and neural network training, are proposed. The relationships between particle swarm optimization and both artificial life and genetic algorithms are described, 1
An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants
 MACHINE LEARNING
, 1999
"... Methods for voting classification algorithms, such as Bagging and AdaBoost, have been shown to be very successful in improving the accuracy of certain classifiers for artificial and realworld datasets. We review these algorithms and describe a large empirical study comparing several variants in co ..."
Abstract

Cited by 695 (2 self)
 Add to MetaCart
in conjunction with a decision tree inducer (three variants) and a NaiveBayes inducer.
The purpose of the study is to improve our understanding of why and
when these algorithms, which use perturbation, reweighting, and
combination techniques, affect classification error. We provide a
bias and variance
Training Support Vector Machines: an Application to Face Detection
, 1997
"... We investigate the application of Support Vector Machines (SVMs) in computer vision. SVM is a learning technique developed by V. Vapnik and his team (AT&T Bell Labs.) that can be seen as a new method for training polynomial, neural network, or Radial Basis Functions classifiers. The decision sur ..."
Abstract

Cited by 728 (1 self)
 Add to MetaCart
We investigate the application of Support Vector Machines (SVMs) in computer vision. SVM is a learning technique developed by V. Vapnik and his team (AT&T Bell Labs.) that can be seen as a new method for training polynomial, neural network, or Radial Basis Functions classifiers. The decision
Solving multiclass learning problems via errorcorrecting output codes
 JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH
, 1995
"... Multiclass learning problems involve nding a de nition for an unknown function f(x) whose range is a discrete set containing k>2values (i.e., k \classes"). The de nition is acquired by studying collections of training examples of the form hx i;f(x i)i. Existing approaches to multiclass l ..."
Abstract

Cited by 730 (8 self)
 Add to MetaCart
learning problems include direct application of multiclass algorithms such as the decisiontree algorithms C4.5 and CART, application of binary concept learning algorithms to learn individual binary functions for each of the k classes, and application of binary concept learning algorithms with distributed
Wrappers for Feature Subset Selection
 AIJ SPECIAL ISSUE ON RELEVANCE
, 1997
"... In the feature subset selection problem, a learning algorithm is faced with the problem of selecting a relevant subset of features upon which to focus its attention, while ignoring the rest. To achieve the best possible performance with a particular learning algorithm on a particular training set, a ..."
Abstract

Cited by 1522 (3 self)
 Add to MetaCart
families of induction algorithms used: decision trees and NaiveBayes.
Hierarchically Classifying Documents Using Very Few Words
, 1997
"... The proliferation of topic hierarchies for text documents has resulted in a need for tools that automatically classify new documents within such hierarchies. Existing classification schemes which ignore the hierarchical structure and treat the topics as separate classes are often inadequate in text ..."
Abstract

Cited by 521 (8 self)
 Add to MetaCart
tree. As we show, each of these smaller problems can be solved accurately by focusing only on a very small set of features, those relevant to the task at hand. This set of relevant features varies widely throughout the hierarchy, so that, while the overall relevant feature set may be large, each
Results 1  10
of
157,858