Results 1  10
of
3,417
Stochastic Perturbation Theory
, 1988
"... . In this paper classical matrix perturbation theory is approached from a probabilistic point of view. The perturbed quantity is approximated by a firstorder perturbation expansion, in which the perturbation is assumed to be random. This permits the computation of statistics estimating the variatio ..."
Abstract

Cited by 907 (36 self)
 Add to MetaCart
. In this paper classical matrix perturbation theory is approached from a probabilistic point of view. The perturbed quantity is approximated by a firstorder perturbation expansion, in which the perturbation is assumed to be random. This permits the computation of statistics estimating
Greedy Function Approximation: A Gradient Boosting Machine
 Annals of Statistics
, 2000
"... Function approximation is viewed from the perspective of numerical optimization in function space, rather than parameter space. A connection is made between stagewise additive expansions and steepest{descent minimization. A general gradient{descent \boosting" paradigm is developed for additi ..."
Abstract

Cited by 1000 (13 self)
 Add to MetaCart
for additive expansions based on any tting criterion. Specic algorithms are presented for least{squares, least{absolute{deviation, and Huber{M loss functions for regression, and multi{class logistic likelihood for classication. Special enhancements are derived for the particular case where the individual
Finding structure in time
 COGNITIVE SCIENCE
, 1990
"... Time underlies many interesting human behaviors. Thus, the question of how to represent time in connectionist models is very important. One approach is to represent time implicitly by its effects on processing rather than explicitly (as in a spatial representation). The current report develops a pro ..."
Abstract

Cited by 2071 (23 self)
 Add to MetaCart
proposal along these lines first described by Jordan (1986) which involves the use of recurrent links in order to provide networks with a dynamic memory. In this approach, hidden unit patterns are fed back to themselves; the internal representations which develop thus reflect task demands in the context
Uniform proofs as a foundation for logic programming
 ANNALS OF PURE AND APPLIED LOGIC
, 1991
"... A prooftheoretic characterization of logical languages that form suitable bases for Prologlike programming languages is provided. This characterization is based on the principle that the declarative meaning of a logic program, provided by provability in a logical system, should coincide with its ..."
Abstract

Cited by 428 (122 self)
 Add to MetaCart
that respects the interpretation of the logical connectives as search instructions. The concept of a uniform proof is used to define the notion of an abstract logic programming language, and it is shown that firstorder and higherorder Horn clauses with classical provability are examples of such a language
Abstract interpretation and application to logic programs
, 1992
"... Abstract interpretation is a theory of semantics approximation which is usedfor the construction of semanticsbasedprogram analysis algorithms (sometimes called“data flow analysis”), the comparison of formal semantics (e.g., construction of a denotational semantics from an operational one), the des ..."
Abstract

Cited by 317 (14 self)
 Add to MetaCart
standardoperational semantics formalizedas a transition system, classes of program properties are first encapsulatedin collecting semantics expressedas fixpoints on partial orders representing concrete program properties. We consider invariance properties characterizing the descendant states of the initial states
Languages That Capture Complexity Classes
 SIAM Journal of Computing
, 1987
"... this paper a series of languages adequate for expressing exactly those properties checkable in a series of computational complexity classes. For example, we show that a property of graphs (respectively groups, binary strings, etc.) is in polynomial time if and only if it is expressible in the first ..."
Abstract

Cited by 245 (21 self)
 Add to MetaCart
this paper a series of languages adequate for expressing exactly those properties checkable in a series of computational complexity classes. For example, we show that a property of graphs (respectively groups, binary strings, etc.) is in polynomial time if and only if it is expressible in the first
Linear Time Computable Problems and FirstOrder Descriptions
, 1996
"... this article is a proof that each FO problem can be solved in linear time if only relational structures of bounded degree are considered. The basic idea of the proof is a localization technique based on a method that was originally developed by Hanf (Hanf 1965) to show that the elementary theories o ..."
Abstract

Cited by 45 (1 self)
 Add to MetaCart
of two structures are equal under certain conditions, i.e., that two structures agree on all firstorder sentences. Fagin, Stockmeyer and Vardi (Fagin et al. 1993) developed a variant of this technique, which is applicable in descriptive complexity theory to classes of finite relational structures
Deciding firstorder properties for sparse graphs
"... We present a lineartime algorithm for deciding firstorder logic (FOL) properties in classes of graphs with bounded expansion. Many natural classes of graphs have bounded expansion: graphs of bounded treewidth, all proper minorclosed classes of graphs, graphs of bounded degree, graphs with no sub ..."
Abstract

Cited by 29 (1 self)
 Add to MetaCart
We present a lineartime algorithm for deciding firstorder logic (FOL) properties in classes of graphs with bounded expansion. Many natural classes of graphs have bounded expansion: graphs of bounded treewidth, all proper minorclosed classes of graphs, graphs of bounded degree, graphs
PolySet Theory
 http://www.rbjones.com/rbjpub/pp/doc/t020.pdf. p011.tex; 25/01/2010; 13:13; p.12 13
"... This document is concerned with the specification of an interpretation of the first order language of set theory. The purpose of this is to provide an ontological basis for foundation systems suitable for the formal derivation of mathematics. The ontology is to include the pure wellfounded sets of ..."
Abstract

Cited by 259 (2 self)
 Add to MetaCart
This document is concerned with the specification of an interpretation of the first order language of set theory. The purpose of this is to provide an ontological basis for foundation systems suitable for the formal derivation of mathematics. The ontology is to include the pure wellfounded sets
On the geometry of metric measure spaces
 II, ACTA MATH
, 2004
"... We introduce and analyze lower (’Ricci’) curvature bounds Curv(M, d,m) ≥ K for metric measure spaces (M, d,m). Our definition is based on convexity properties of the relative entropy Ent(.m) regarded as a function on the L2Wasserstein space of probability measures on the metric space (M, d). Amo ..."
Abstract

Cited by 247 (9 self)
 Add to MetaCart
convergence of metric measure spaces. We define a complete and separable metric D on the family of all isomorphism classes of normalized metric measure spaces. The metric D has a natural interpretation, based on the concept of optimal mass transportation. We also prove that the family of normalized metric measure
Results 1  10
of
3,417