Results 1  10
of
368,003
Evaluating the Accuracy of SamplingBased Approaches to the Calculation of Posterior Moments
 IN BAYESIAN STATISTICS
, 1992
"... Data augmentation and Gibbs sampling are two closely related, samplingbased approaches to the calculation of posterior moments. The fact that each produces a sample whose constituents are neither independent nor identically distributed complicates the assessment of convergence and numerical accurac ..."
Abstract

Cited by 583 (14 self)
 Add to MetaCart
Data augmentation and Gibbs sampling are two closely related, samplingbased approaches to the calculation of posterior moments. The fact that each produces a sample whose constituents are neither independent nor identically distributed complicates the assessment of convergence and numerical
The space complexity of approximating the frequency moments
 JOURNAL OF COMPUTER AND SYSTEM SCIENCES
, 1996
"... The frequency moments of a sequence containing mi elements of type i, for 1 ≤ i ≤ n, are the numbers Fk = �n i=1 mki. We consider the space complexity of randomized algorithms that approximate the numbers Fk, when the elements of the sequence are given one by one and cannot be stored. Surprisingly, ..."
Abstract

Cited by 855 (12 self)
 Add to MetaCart
The frequency moments of a sequence containing mi elements of type i, for 1 ≤ i ≤ n, are the numbers Fk = �n i=1 mki. We consider the space complexity of randomized algorithms that approximate the numbers Fk, when the elements of the sequence are given one by one and cannot be stored. Surprisingly
Estimation and Inference in Econometrics
, 1993
"... The astonishing increase in computer performance over the past two decades has made it possible for economists to base many statistical inferences on simulated, or bootstrap, distributions rather than on distributions obtained from asymptotic theory. In this paper, I review some of the basic ideas o ..."
Abstract

Cited by 1151 (3 self)
 Add to MetaCart
The astonishing increase in computer performance over the past two decades has made it possible for economists to base many statistical inferences on simulated, or bootstrap, distributions rather than on distributions obtained from asymptotic theory. In this paper, I review some of the basic ideas of bootstrap inference. The paper discusses Monte Carlo tests, several types of bootstrap test, and bootstrap confidence intervals. Although bootstrapping often works well, it does not do so in every case.
Ptolemy: A Framework for Simulating and Prototyping Heterogeneous Systems
, 1992
"... Ptolemy is an environment for simulation and prototyping of heterogeneous systems. It uses modern objectoriented software technology (C++) to model each subsystem in a natural and efficient manner, and to integrate these subsystems into a whole. Ptolemy encompasses practically all aspects of design ..."
Abstract

Cited by 569 (90 self)
 Add to MetaCart
Ptolemy is an environment for simulation and prototyping of heterogeneous systems. It uses modern objectoriented software technology (C++) to model each subsystem in a natural and efficient manner, and to integrate these subsystems into a whole. Ptolemy encompasses practically all aspects of designing signal processing and communications systems, ranging from algorithms and communication strategies, simulation, hardware and software design, parallel computing, and generating realtime prototypes. To accommodate this breadth, Ptolemy must support a plethora of widelydiffering design styles. The core of Ptolemy is a set of objectoriented class definitions that makes few assumptions about the system to be modeled; rather, standard interfaces are provided for generic objects and more specialized, applicationspecific objects are derived from these. A basic abstraction in Ptolemy is the Domain, which realizes a computational model appropriate for a particular type of subsystem. Current e...
Mixed MNL Models for Discrete Response
 JOURNAL OF APPLIED ECONOMETRICS
, 2000
"... This paper considers mixed, or random coefficients, multinomial logit (MMNL) models for discrete response, and establishes the following results: Under mild regularity conditions, any discrete choice model derived from random utility maximization has choice probabilities that can be approximated as ..."
Abstract

Cited by 466 (14 self)
 Add to MetaCart
as closely as one pleases by a MMNLmodel. Practical estimation of a parametric mixing family can be carried out by Maximum Simulated Likelihood Estimation or Method of Simulated Moments, and easily computed instruments are provided that make the latter procedure fairly efficient. The adequacy of a mixing
Exact Sampling with Coupled Markov Chains and Applications to Statistical Mechanics
, 1996
"... For many applications it is useful to sample from a finite set of objects in accordance with some particular distribution. One approach is to run an ergodic (i.e., irreducible aperiodic) Markov chain whose stationary distribution is the desired distribution on this set; after the Markov chain has ..."
Abstract

Cited by 548 (13 self)
 Add to MetaCart
For many applications it is useful to sample from a finite set of objects in accordance with some particular distribution. One approach is to run an ergodic (i.e., irreducible aperiodic) Markov chain whose stationary distribution is the desired distribution on this set; after the Markov chain
A Simple Estimator of Cointegrating Vectors in Higher Order Cointegrated Systems
 ECONOMETRICA
, 1993
"... Efficient estimators of cointegrating vectors are presented for systems involving deterministic components and variables of differing, higher orders of integration. The estimators are computed using GLS or OLS, and Wald Statistics constructed from these estimators have asymptotic x2 distributions. T ..."
Abstract

Cited by 507 (3 self)
 Add to MetaCart
Efficient estimators of cointegrating vectors are presented for systems involving deterministic components and variables of differing, higher orders of integration. The estimators are computed using GLS or OLS, and Wald Statistics constructed from these estimators have asymptotic x2 distributions
ModelBased Clustering, Discriminant Analysis, and Density Estimation
 JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
, 2000
"... Cluster analysis is the automated search for groups of related observations in a data set. Most clustering done in practice is based largely on heuristic but intuitively reasonable procedures and most clustering methods available in commercial software are also of this type. However, there is little ..."
Abstract

Cited by 557 (28 self)
 Add to MetaCart
for modelbased clustering that provides a principled statistical approach to these issues. We also show that this can be useful for other problems in multivariate analysis, such as discriminant analysis and multivariate density estimation. We give examples from medical diagnosis, mineeld detection, cluster
Estimating the Support of a HighDimensional Distribution
, 1999
"... Suppose you are given some dataset drawn from an underlying probability distribution P and you want to estimate a "simple" subset S of input space such that the probability that a test point drawn from P lies outside of S is bounded by some a priori specified between 0 and 1. We propo ..."
Abstract

Cited by 766 (29 self)
 Add to MetaCart
Suppose you are given some dataset drawn from an underlying probability distribution P and you want to estimate a "simple" subset S of input space such that the probability that a test point drawn from P lies outside of S is bounded by some a priori specified between 0 and 1. We
Results 1  10
of
368,003