Results 1  10
of
27,893
Efficient Learning of Typical Finite Automata from Random Walks
, 1997
"... This paper describes new and efficient algorithms for learning deterministic finite automata. Our approach is primarily distinguished by two features: (1) the adoption of an averagecase setting to model the ``typical'' labeling of a finite automaton, while retaining a worstcase model for ..."
Abstract

Cited by 50 (9 self)
 Add to MetaCart
This paper describes new and efficient algorithms for learning deterministic finite automata. Our approach is primarily distinguished by two features: (1) the adoption of an averagecase setting to model the ``typical'' labeling of a finite automaton, while retaining a worstcase model
Probabilistic Finite Automata and Randomness in Nature: a New Approach in the Modelling and Prediction of Climatic Parameters 1
"... Abstract: A model to characterize and predict continuous time series from machine learning techniques is proposed. This model includes the following three steps: dynamic discretization of continuous values, construction of probabilistic finite automata and prediction of new series with randomness. T ..."
Abstract
 Add to MetaCart
Abstract: A model to characterize and predict continuous time series from machine learning techniques is proposed. This model includes the following three steps: dynamic discretization of continuous values, construction of probabilistic finite automata and prediction of new series with randomness
1Introduction Efficient Learning of Typical Finite Automata from Random Walks (Extended Abstract)
"... In this paper, we describe new and efficient algorithms for learning deterministic finite automata. Our approach is primarily distinguished by two features: The adoption of an averagecase setting to model the “typical” labeling of a finite automaton, while retaining a worstcase model for the unde ..."
Abstract
 Add to MetaCart
In this paper, we describe new and efficient algorithms for learning deterministic finite automata. Our approach is primarily distinguished by two features: The adoption of an averagecase setting to model the “typical” labeling of a finite automaton, while retaining a worstcase model
Cryptographic Limitations on Learning Boolean Formulae and Finite Automata
 PROCEEDINGS OF THE TWENTYFIRST ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING
, 1989
"... In this paper we prove the intractability of learning several classes of Boolean functions in the distributionfree model (also called the Probably Approximately Correct or PAC model) of learning from examples. These results are representation independent, in that they hold regardless of the syntact ..."
Abstract

Cited by 347 (15 self)
 Add to MetaCart
of the syntactic form in which the learner chooses to represent its hypotheses. Our methods reduce the problems of cracking a number of wellknown publickey cryptosystems to the learning problems. We prove that a polynomialtime learning algorithm for Boolean formulae, deterministic finite automata or constant
Statistical mechanics of complex networks
 Rev. Mod. Phys
"... Complex networks describe a wide range of systems in nature and society, much quoted examples including the cell, a network of chemicals linked by chemical reactions, or the Internet, a network of routers and computers connected by physical links. While traditionally these systems were modeled as ra ..."
Abstract

Cited by 2083 (10 self)
 Add to MetaCart
as random graphs, it is increasingly recognized that the topology and evolution of real
Implications of rational inattention
 JOURNAL OF MONETARY ECONOMICS
, 2002
"... A constraint that actions can depend on observations only through a communication channel with finite Shannon capacity is shown to be able to play a role very similar to that of a signal extraction problem or an adjustment cost in standard control problems. The resulting theory looks enough like fa ..."
Abstract

Cited by 514 (10 self)
 Add to MetaCart
A constraint that actions can depend on observations only through a communication channel with finite Shannon capacity is shown to be able to play a role very similar to that of a signal extraction problem or an adjustment cost in standard control problems. The resulting theory looks enough like
UPPAAL in a Nutshell
, 1997
"... . This paper presents the overall structure, the design criteria, and the main features of the tool box Uppaal. It gives a detailed user guide which describes how to use the various tools of Uppaal version 2.02 to construct abstract models of a realtime system, to simulate its dynamical behavior, ..."
Abstract

Cited by 663 (49 self)
 Add to MetaCart
and verification of realtime systems, based on constraintsolving and onthefly techniques, developed jointly by Uppsala University and Aalborg University. It is appropriate for systems that can be modeled as a collection of nondeterministic processes with finite control structure and realvalued clocks
WaitFree Synchronization
 ACM Transactions on Programming Languages and Systems
, 1993
"... A waitfree implementation of a concurrent data object is one that guarantees that any process can complete any operation in a finite number of steps, regardless of the execution speeds of the other processes. The problem of constructing a waitfree implementation of one data object from another lie ..."
Abstract

Cited by 873 (28 self)
 Add to MetaCart
A waitfree implementation of a concurrent data object is one that guarantees that any process can complete any operation in a finite number of steps, regardless of the execution speeds of the other processes. The problem of constructing a waitfree implementation of one data object from another
Simulating Physics with Computers
 SIAM Journal on Computing
, 1982
"... A digital computer is generally believed to be an efficient universal computing device; that is, it is believed able to simulate any physical computing device with an increase in computation time of at most a polynomial factor. This may not be true when quantum mechanics is taken into consideration. ..."
Abstract

Cited by 601 (1 self)
 Add to MetaCart
. This paper considers factoring integers and finding discrete logarithms, two problems which are generally thought to be hard on a classical computer and have been used as the basis of several proposed cryptosystems. Efficient randomized algorithms are given for these two problems on a hypothetical quantum
A New Kind of Science
, 2002
"... “Somebody says, ‘You know, you people always say that space is continuous. How do you know when you get to a small enough dimension that there really are enough points in between, that it isn’t just a lot of dots separated by little distances? ’ Or they say, ‘You know those quantum mechanical amplit ..."
Abstract

Cited by 850 (0 self)
 Add to MetaCart
“Somebody says, ‘You know, you people always say that space is continuous. How do you know when you get to a small enough dimension that there really are enough points in between, that it isn’t just a lot of dots separated by little distances? ’ Or they say, ‘You know those quantum mechanical amplitudes you told me about, they’re so complicated and absurd, what makes you think those are right? Maybe they aren’t right. ’ Such remarks are obvious and are perfectly clear to anybody who is working on this problem. It does not do any good to point this out.” —Richard Feynman [1, p.161]
Results 1  10
of
27,893