Results 1  10
of
2,118,508
The hierarchy problem and new dimensions at a millimeter, Phys
 Lett. B
, 1998
"... We propose a new framework for solving the hierarchy problem which does not rely on either supersymmetry or technicolor. In this framework, the gravitational and gauge interactions become united at the weak scale, which we take as the only fundamental short distance scale in nature. The observed wea ..."
Abstract

Cited by 667 (5 self)
 Add to MetaCart
We propose a new framework for solving the hierarchy problem which does not rely on either supersymmetry or technicolor. In this framework, the gravitational and gauge interactions become united at the weak scale, which we take as the only fundamental short distance scale in nature. The observed
A large mass hierarchy from a small extra dimension
, 1999
"... We propose a new higherdimensional mechanism for solving the hierarchy problem. The weak scale is generated from a large scale of order the Planck scale through an exponential hierarchy. However, this exponential arises not from gauge interactions but from the background metric (which is a slice of ..."
Abstract

Cited by 1086 (4 self)
 Add to MetaCart
We propose a new higherdimensional mechanism for solving the hierarchy problem. The weak scale is generated from a large scale of order the Planck scale through an exponential hierarchy. However, this exponential arises not from gauge interactions but from the background metric (which is a slice
Regularization and variable selection via the Elastic Net
 Journal of the Royal Statistical Society, Series B
, 2005
"... Summary. We propose the elastic net, a new regularization and variable selection method. Real world data and a simulation study show that the elastic net often outperforms the lasso, while enjoying a similar sparsity of representation. In addition, the elastic net encourages a grouping effect, where ..."
Abstract

Cited by 922 (13 self)
 Add to MetaCart
Summary. We propose the elastic net, a new regularization and variable selection method. Real world data and a simulation study show that the elastic net often outperforms the lasso, while enjoying a similar sparsity of representation. In addition, the elastic net encourages a grouping effect
Coarsetofine nbest parsing and MaxEnt discriminative reranking
 In ACL
, 2005
"... Discriminative reranking is one method for constructing highperformance statistical parsers (Collins, 2000). A discriminative reranker requires a source of candidate parses for each sentence. This paper describes a simple yet novel method for constructing sets of 50best parses based on a co ..."
Abstract

Cited by 509 (14 self)
 Add to MetaCart
coarsetofine generative parser (Charniak, 2000). This method generates 50best lists that are of substantially higher quality than previously obtainable.
Probabilistic Outputs for Support Vector Machines and Comparisons to Regularized Likelihood Methods
 ADVANCES IN LARGE MARGIN CLASSIFIERS
, 1999
"... The output of a classifier should be a calibrated posterior probability to enable postprocessing. Standard SVMs do not provide such probabilities. One method to create probabilities is to directly train a kernel classifier with a logit link function and a regularized maximum likelihood score. Howev ..."
Abstract

Cited by 1041 (0 self)
 Add to MetaCart
The output of a classifier should be a calibrated posterior probability to enable postprocessing. Standard SVMs do not provide such probabilities. One method to create probabilities is to directly train a kernel classifier with a logit link function and a regularized maximum likelihood score
Dynamic Finegrained Localization in AdHoc Networks of Sensors
 PROCEEDINGS OF THE SEVENTH ANNUAL INTERNATIONAL CONFERENCE ON MOBILE COMPUTING AND NETWORKING, MOBICOM 2001
, 2001
"... ..."
Finegrained network time synchronization using reference broadcasts
, 2002
"... Permission is granted for noncommercial reproduction of the work for educational or research purposes. ..."
Abstract

Cited by 764 (28 self)
 Add to MetaCart
Permission is granted for noncommercial reproduction of the work for educational or research purposes.
Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
 JOURNAL OF MACHINE LEARNING RESEARCH
, 2006
"... We propose a family of learning algorithms based on a new form of regularization that allows us to exploit the geometry of the marginal distribution. We focus on a semisupervised framework that incorporates labeled and unlabeled data in a generalpurpose learner. Some transductive graph learning al ..."
Abstract

Cited by 560 (15 self)
 Add to MetaCart
We propose a family of learning algorithms based on a new form of regularization that allows us to exploit the geometry of the marginal distribution. We focus on a semisupervised framework that incorporates labeled and unlabeled data in a generalpurpose learner. Some transductive graph learning
Regularization paths for generalized linear models via coordinate descent
, 2009
"... We develop fast algorithms for estimation of generalized linear models with convex penalties. The models include linear regression, twoclass logistic regression, and multinomial regression problems while the penalties include ℓ1 (the lasso), ℓ2 (ridge regression) and mixtures of the two (the elastic ..."
Abstract

Cited by 698 (14 self)
 Add to MetaCart
elastic net). The algorithms use cyclical coordinate descent, computed along a regularization path. The methods can handle large problems and can also deal efficiently with sparse features. In comparative timings we find that the new algorithms are considerably faster than competing methods.
Hierarchically Classifying Documents Using Very Few Words
, 1997
"... The proliferation of topic hierarchies for text documents has resulted in a need for tools that automatically classify new documents within such hierarchies. Existing classification schemes which ignore the hierarchical structure and treat the topics as separate classes are often inadequate in text ..."
Abstract

Cited by 521 (8 self)
 Add to MetaCart
The proliferation of topic hierarchies for text documents has resulted in a need for tools that automatically classify new documents within such hierarchies. Existing classification schemes which ignore the hierarchical structure and treat the topics as separate classes are often inadequate in text
Results 1  10
of
2,118,508