Results 1  10
of
57,525
The Complexity Of Finding Small Triangulations Of Convex 3Polytopes
, 2000
"... The problem of finding a triangulation of a convex threedimensional polytope with few tetrahedra is NPhard. We discuss other related complexity results. ..."
Abstract

Cited by 7 (0 self)
 Add to MetaCart
The problem of finding a triangulation of a convex threedimensional polytope with few tetrahedra is NPhard. We discuss other related complexity results.
Just Relax: Convex Programming Methods for Identifying Sparse Signals in Noise
, 2006
"... This paper studies a difficult and fundamental problem that arises throughout electrical engineering, applied mathematics, and statistics. Suppose that one forms a short linear combination of elementary signals drawn from a large, fixed collection. Given an observation of the linear combination that ..."
Abstract

Cited by 496 (2 self)
 Add to MetaCart
. This paper studies a method called convex relaxation, which attempts to recover the ideal sparse signal by solving a convex program. This approach is powerful because the optimization can be completed in polynomial time with standard scientific software. The paper provides general conditions which ensure
Guaranteed minimumrank solutions of linear matrix equations via nuclear norm minimization
, 2007
"... The affine rank minimization problem consists of finding a matrix of minimum rank that satisfies a given system of linear equality constraints. Such problems have appeared in the literature of a diverse set of fields including system identification and control, Euclidean embedding, and collaborative ..."
Abstract

Cited by 568 (23 self)
 Add to MetaCart
, and collaborative filtering. Although specific instances can often be solved with specialized algorithms, the general affine rank minimization problem is NPhard, because it contains vector cardinality minimization as a special case. In this paper, we show that if a certain restricted isometry property holds
Convergent Treereweighted Message Passing for Energy Minimization
 ACCEPTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE (PAMI), 2006. ABSTRACTACCEPTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE (PAMI)
, 2006
"... Algorithms for discrete energy minimization are of fundamental importance in computer vision. In this paper we focus on the recent technique proposed by Wainwright et al. [33] treereweighted maxproduct message passing (TRW). It was inspired by the problem of maximizing a lower bound on the energy ..."
Abstract

Cited by 491 (16 self)
 Add to MetaCart
Algorithms for discrete energy minimization are of fundamental importance in computer vision. In this paper we focus on the recent technique proposed by Wainwright et al. [33] treereweighted maxproduct message passing (TRW). It was inspired by the problem of maximizing a lower bound
For Most Large Underdetermined Systems of Linear Equations the Minimal ℓ1norm Solution is also the Sparsest Solution
 Comm. Pure Appl. Math
, 2004
"... We consider linear equations y = Φα where y is a given vector in R n, Φ is a given n by m matrix with n < m ≤ An, and we wish to solve for α ∈ R m. We suppose that the columns of Φ are normalized to unit ℓ 2 norm 1 and we place uniform measure on such Φ. We prove the existence of ρ = ρ(A) so that ..."
Abstract

Cited by 560 (10 self)
 Add to MetaCart
that for large n, and for all Φ’s except a negligible fraction, the following property holds: For every y having a representation y = Φα0 by a coefficient vector α0 ∈ R m with fewer than ρ · n nonzeros, the solution α1 of the ℓ 1 minimization problem min �x�1 subject to Φα = y is unique and equal to α0
Global Optimization with Polynomials and the Problem of Moments
 SIAM Journal on Optimization
, 2001
"... We consider the problem of finding the unconstrained global minimum of a realvalued polynomial p(x) : R R, as well as the global minimum of p(x), in a compact set K defined by polynomial inequalities. It is shown that this problem reduces to solving an (often finite) sequence of convex linear mat ..."
Abstract

Cited by 569 (47 self)
 Add to MetaCart
We consider the problem of finding the unconstrained global minimum of a realvalued polynomial p(x) : R R, as well as the global minimum of p(x), in a compact set K defined by polynomial inequalities. It is shown that this problem reduces to solving an (often finite) sequence of convex linear
Improved Approximation Algorithms for Maximum Cut and Satisfiability Problems Using Semidefinite Programming
 Journal of the ACM
, 1995
"... We present randomized approximation algorithms for the maximum cut (MAX CUT) and maximum 2satisfiability (MAX 2SAT) problems that always deliver solutions of expected value at least .87856 times the optimal value. These algorithms use a simple and elegant technique that randomly rounds the solution ..."
Abstract

Cited by 1231 (13 self)
 Add to MetaCart
the solution to a nonlinear programming relaxation. This relaxation can be interpreted both as a semidefinite program and as an eigenvalue minimization problem. The best previously known approximation algorithms for these problems had performance guarantees of ...
Graphical models, exponential families, and variational inference
, 2008
"... The formalism of probabilistic graphical models provides a unifying framework for capturing complex dependencies among random variables, and building largescale multivariate statistical models. Graphical models have become a focus of research in many statistical, computational and mathematical fiel ..."
Abstract

Cited by 800 (26 self)
 Add to MetaCart
The formalism of probabilistic graphical models provides a unifying framework for capturing complex dependencies among random variables, and building largescale multivariate statistical models. Graphical models have become a focus of research in many statistical, computational and mathematical fields, including bioinformatics, communication theory, statistical physics, combinatorial optimization, signal and image processing, information retrieval and statistical machine learning. Many problems that arise in specific instances — including the key problems of computing marginals and modes of probability distributions — are best studied in the general setting. Working with exponential family representations, and exploiting the conjugate duality between the cumulant function and the entropy for exponential families, we develop general variational representations of the problems of computing likelihoods, marginal probabilities and most probable configurations. We describe how a wide varietyof algorithms — among them sumproduct, cluster variational methods, expectationpropagation, mean field methods, maxproduct and linear programming relaxation, as well as conic programming relaxations — can all be understood in terms of exact or approximate forms of these variational representations. The variational approach provides a complementary alternative to Markov chain Monte Carlo as a general source of approximation methods for inference in largescale statistical models.
Results 1  10
of
57,525