Results 1  10
of
813,358
Finding Small Sparse Cuts by Random Walk
"... Abstract. We study the problem of finding a small sparse cut in an undirected graph. Given an undirected graph G = (V,E) and a parameter k ≤ E, the small sparsest cut problem is to find a set S ⊆ V with minimum conductance among all sets with volume at most k. Using ideas developed in local graph ..."
Abstract

Cited by 4 (0 self)
 Add to MetaCart
Abstract. We study the problem of finding a small sparse cut in an undirected graph. Given an undirected graph G = (V,E) and a parameter k ≤ E, the small sparsest cut problem is to find a set S ⊆ V with minimum conductance among all sets with volume at most k. Using ideas developed in local graph
Random walks for image segmentation
 IEEE Transactions on Pattern Analysis and Machine Intelligence
, 2006
"... Abstract—A novel method is proposed for performing multilabel, interactive image segmentation. Given a small number of pixels with userdefined (or predefined) labels, one can analytically and quickly determine the probability that a random walker starting at each unlabeled pixel will first reach on ..."
Abstract

Cited by 385 (21 self)
 Add to MetaCart
segmentation, graph theory, random walks, combinatorial Dirichlet problem, harmonic functions, Laplace equation, graph cuts, boundary completion. Ç 1
Good ErrorCorrecting Codes based on Very Sparse Matrices
, 1999
"... We study two families of errorcorrecting codes defined in terms of very sparse matrices. "MN" (MacKayNeal) codes are recently invented, and "Gallager codes" were first investigated in 1962, but appear to have been largely forgotten, in spite of their excellent properties. The ..."
Abstract

Cited by 741 (23 self)
 Add to MetaCart
We study two families of errorcorrecting codes defined in terms of very sparse matrices. "MN" (MacKayNeal) codes are recently invented, and "Gallager codes" were first investigated in 1962, but appear to have been largely forgotten, in spite of their excellent properties
Just Relax: Convex Programming Methods for Identifying Sparse Signals in Noise
, 2006
"... This paper studies a difficult and fundamental problem that arises throughout electrical engineering, applied mathematics, and statistics. Suppose that one forms a short linear combination of elementary signals drawn from a large, fixed collection. Given an observation of the linear combination that ..."
Abstract

Cited by 496 (2 self)
 Add to MetaCart
. This paper studies a method called convex relaxation, which attempts to recover the ideal sparse signal by solving a convex program. This approach is powerful because the optimization can be completed in polynomial time with standard scientific software. The paper provides general conditions which ensure
Finding community structure in networks using the eigenvectors of matrices
, 2006
"... We consider the problem of detecting communities or modules in networks, groups of vertices with a higherthanaverage density of edges connecting them. Previous work indicates that a robust approach to this problem is the maximization of the benefit function known as “modularity ” over possible div ..."
Abstract

Cited by 500 (0 self)
 Add to MetaCart
We consider the problem of detecting communities or modules in networks, groups of vertices with a higherthanaverage density of edges connecting them. Previous work indicates that a robust approach to this problem is the maximization of the benefit function known as “modularity ” over possible divisions of a network. Here we show that this maximization process can be written in terms of the eigenspectrum of a matrix we call the modularity matrix, which plays a role in community detection similar to that played by the graph Laplacian in graph partitioning calculations. This result leads us to a number of possible algorithms for detecting community structure, as well as several other results, including a spectral measure of bipartite structure in networks and a new centrality measure that identifies those vertices that occupy central positions within the communities to which they belong. The algorithms and measures proposed are illustrated with applications to a variety of realworld complex networks.
Stock Market Prices Do Not Follow Random Walks: Evidence from a Simple Specification Test
 REVIEW OF FINANCIAL STUDIES
, 1988
"... In this article we test the random walk hypothesis for weekly stock market returns by comparing variance estimators derived from data sampled at different frequencies. The random walk model is strongly rejected for the entire sample period (19621985) and for all subperiod for a variety of aggrega ..."
Abstract

Cited by 492 (18 self)
 Add to MetaCart
of aggregate returns indexes and sizesorted portofolios. Although the rejections are due largely to the behavior of small stocks, they cannot be attributed completely to the effects of infrequent trading or timevarying volatilities. Moreover, the rejection of the random walk for weekly returns does
Randomized Algorithms
, 1995
"... Randomized algorithms, once viewed as a tool in computational number theory, have by now found widespread application. Growth has been fueled by the two major benefits of randomization: simplicity and speed. For many applications a randomized algorithm is the fastest algorithm available, or the simp ..."
Abstract

Cited by 2210 (37 self)
 Add to MetaCart
Randomized algorithms, once viewed as a tool in computational number theory, have by now found widespread application. Growth has been fueled by the two major benefits of randomization: simplicity and speed. For many applications a randomized algorithm is the fastest algorithm available
Results 1  10
of
813,358