Results 1  10
of
11,674
Evolving Neural Networks through Augmenting Topologies
 Evolutionary Computation
"... An important question in neuroevolution is how to gain an advantage from evolving neural network topologies along with weights. We present a method, NeuroEvolution of Augmenting Topologies (NEAT), which outperforms the best fixedtopology method on a challenging benchmark reinforcement learning task ..."
Abstract

Cited by 536 (112 self)
 Add to MetaCart
the possibility of evolving increasingly complex solutions over generations, and strengthening the analogy with biological evolution.
Genetic Programming
, 1997
"... Introduction Genetic programming is a domainindependent problemsolving approach in which computer programs are evolved to solve, or approximately solve, problems. Genetic programming is based on the Darwinian principle of reproduction and survival of the fittest and analogs of naturally occurring ..."
Abstract

Cited by 1056 (12 self)
 Add to MetaCart
is now called the genetic algorithm (GA). The genetic algorithm attempts to find a good (or best) solution to the problem by genetically breeding a population of individuals over a series of generations. In the genetic algorithm, each individual in the population represents a candidate solut
Depthfirst IterativeDeepening: An Optimal Admissible Tree Search
 Artificial Intelligence
, 1985
"... The complexities of various search algorithms are considered in terms of time, space, and cost of solution path. It is known that breadthfirst search requires too much space and depthfirst search can use too much time and doesn't always find a cheapest path. A depthfirst iteratiwdeepening a ..."
Abstract

Cited by 527 (24 self)
 Add to MetaCart
The complexities of various search algorithms are considered in terms of time, space, and cost of solution path. It is known that breadthfirst search requires too much space and depthfirst search can use too much time and doesn't always find a cheapest path. A depthfirst iteratiw
Finite state Markovchain approximations to univariate and vector autoregressions
 Economics Letters
, 1986
"... The paper develops a procedure for finding a discretevalued Markov chain whose sample paths approximate well those of a vector autoregression. The procedure has applications in those areas of economics, finance, and econometrics where approximate solutions to integral equations are required. 1. ..."
Abstract

Cited by 493 (0 self)
 Add to MetaCart
The paper develops a procedure for finding a discretevalued Markov chain whose sample paths approximate well those of a vector autoregression. The procedure has applications in those areas of economics, finance, and econometrics where approximate solutions to integral equations are required. 1.
A Fast Elitist NonDominated Sorting Genetic Algorithm for MultiObjective Optimization: NSGAII
, 2000
"... Multiobjective evolutionary algorithms which use nondominated sorting and sharing have been mainly criticized for their (i) 4 computational complexity (where is the number of objectives and is the population size), (ii) nonelitism approach, and (iii) the need for specifying a sharing ..."
Abstract

Cited by 662 (15 self)
 Add to MetaCart
to find much better spread of solutions in all problems compared to PAESanother elitist multiobjective EA which pays special attention towards creating a diverse Paretooptimal front. Because of NSGAII's low computational requirements, elitist approach, and parameterless sharing approach
The information bottleneck method
, 1999
"... We define the relevant information in a signal x ∈ X as being the information that this signal provides about another signal y ∈ Y. Examples include the information that face images provide about the names of the people portrayed, or the information that speech sounds provide about the words spoken. ..."
Abstract

Cited by 540 (35 self)
 Add to MetaCart
. Understanding the signal x requires more than just predicting y, it also requires specifying which features of X play a role in the prediction. We formalize this problem as that of finding a short code for X that preserves the maximum information about Y. That is, we squeeze the information that X provides
A Fast and Elitist MultiObjective Genetic Algorithm: NSGAII
, 2000
"... Multiobjective evolutionary algorithms which use nondominated sorting and sharing have been mainly criticized for their (i) O(MN computational complexity (where M is the number of objectives and N is the population size), (ii) nonelitism approach, and (iii) the need for specifying a sharing param ..."
Abstract

Cited by 1815 (60 self)
 Add to MetaCart
, is able to find much better spread of solutions and better convergence near the true Paretooptimal front compared to PAES and SPEA  two other elitist multiobjective EAs which pay special attention towards creating a diverse Paretooptimal front. Moreover, we modify the definition of dominance in order
Graphs over Time: Densification Laws, Shrinking Diameters and Possible Explanations
, 2005
"... How do real graphs evolve over time? What are “normal” growth patterns in social, technological, and information networks? Many studies have discovered patterns in static graphs, identifying properties in a single snapshot of a large network, or in a very small number of snapshots; these include hea ..."
Abstract

Cited by 541 (48 self)
 Add to MetaCart
How do real graphs evolve over time? What are “normal” growth patterns in social, technological, and information networks? Many studies have discovered patterns in static graphs, identifying properties in a single snapshot of a large network, or in a very small number of snapshots; these include
Pig Latin: A NotSoForeign Language for Data Processing
"... There is a growing need for adhoc analysis of extremely large data sets, especially at internet companies where innovation critically depends on being able to analyze terabytes of data collected every day. Parallel database products, e.g., Teradata, offer a solution, but are usually prohibitively e ..."
Abstract

Cited by 607 (13 self)
 Add to MetaCart
There is a growing need for adhoc analysis of extremely large data sets, especially at internet companies where innovation critically depends on being able to analyze terabytes of data collected every day. Parallel database products, e.g., Teradata, offer a solution, but are usually prohibitively
ModelDriven Data Acquisition in Sensor Networks
 IN VLDB
, 2004
"... Declarative queries are proving to be an attractive paradigm for interacting with networks of wireless sensors. The metaphor that "the sensornet is a database" is problematic, however, because sensors do not exhaustively represent the data in the real world. In order to map the raw sensor ..."
Abstract

Cited by 449 (36 self)
 Add to MetaCart
of our answer against the communication and data acquisition costs in the network. We describe an exponential time algorithm for finding the optimal solution to this optimization problem, and a polynomialtime heuristic for identifying solutions that perform well in practice. We evaluate our approach
Results 1  10
of
11,674