Results 1  10
of
2,048,380
Feature Subset Selection by Estimation of Distribution Algorithms
"... This paper describes the application of four evolutionary algorithms to the selection of feature subsets for classification problems. Besides of a ..."
Abstract

Cited by 13 (1 self)
 Add to MetaCart
This paper describes the application of four evolutionary algorithms to the selection of feature subsets for classification problems. Besides of a
Prototype Selection and Feature Subset Selection by Estimation of Distribution Algorithms. A case study in the survival of cirrhotic patients treated with TIPS
"... . The Transjugular Intrahepatic Portosystemic Shunt (TIPS) is an interventional treatment for cirrhotic patients with portal hypertension. In the light of our medical staff's experience, the consequences of TIPS are not homogeneous for all the patients and a subgroup dies in the first six m ..."
Abstract

Cited by 10 (2 self)
 Add to MetaCart
months after TIPS placement. An investigation for predicting the conduct of cirrhotic patients treated with TIPS is carried out using a clinical database with 107 cases and 77 attributes. We have applied a new Estimation of Distribution Algorithms based approach in order to perform a Prototype
Wrappers for Feature Subset Selection
 AIJ SPECIAL ISSUE ON RELEVANCE
, 1997
"... In the feature subset selection problem, a learning algorithm is faced with the problem of selecting a relevant subset of features upon which to focus its attention, while ignoring the rest. To achieve the best possible performance with a particular learning algorithm on a particular training set, a ..."
Abstract

Cited by 1522 (3 self)
 Add to MetaCart
In the feature subset selection problem, a learning algorithm is faced with the problem of selecting a relevant subset of features upon which to focus its attention, while ignoring the rest. To achieve the best possible performance with a particular learning algorithm on a particular training set
Irrelevant Features and the Subset Selection Problem
 MACHINE LEARNING: PROCEEDINGS OF THE ELEVENTH INTERNATIONAL
, 1994
"... We address the problem of finding a subset of features that allows a supervised induction algorithm to induce small highaccuracy concepts. We examine notions of relevance and irrelevance, and show that the definitions used in the machine learning literature do not adequately partition the features ..."
Abstract

Cited by 741 (26 self)
 Add to MetaCart
into useful categories of relevance. We present definitions for irrelevance and for two degrees of relevance. These definitions improve our understanding of the behavior of previous subset selection algorithms, and help define the subset of features that should be sought. The features selected should depend
An introduction to variable and feature selection
 Journal of Machine Learning Research
, 2003
"... Variable and feature selection have become the focus of much research in areas of application for which datasets with tens or hundreds of thousands of variables are available. ..."
Abstract

Cited by 1283 (16 self)
 Add to MetaCart
Variable and feature selection have become the focus of much research in areas of application for which datasets with tens or hundreds of thousands of variables are available.
Estimating the Support of a HighDimensional Distribution
, 1999
"... Suppose you are given some dataset drawn from an underlying probability distribution P and you want to estimate a "simple" subset S of input space such that the probability that a test point drawn from P lies outside of S is bounded by some a priori specified between 0 and 1. We propo ..."
Abstract

Cited by 766 (29 self)
 Add to MetaCart
Suppose you are given some dataset drawn from an underlying probability distribution P and you want to estimate a "simple" subset S of input space such that the probability that a test point drawn from P lies outside of S is bounded by some a priori specified between 0 and 1. We
A Comparative Study on Feature Selection in Text Categorization
, 1997
"... This paper is a comparative study of feature selection methods in statistical learning of text categorization. The focus is on aggressive dimensionality reduction. Five methods were evaluated, including term selection based on document frequency (DF), information gain (IG), mutual information (MI), ..."
Abstract

Cited by 1294 (15 self)
 Add to MetaCart
This paper is a comparative study of feature selection methods in statistical learning of text categorization. The focus is on aggressive dimensionality reduction. Five methods were evaluated, including term selection based on document frequency (DF), information gain (IG), mutual information (MI
Inducing Features of Random Fields
 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
, 1997
"... We present a technique for constructing random fields from a set of training samples. The learning paradigm builds increasingly complex fields by allowing potential functions, or features, that are supported by increasingly large subgraphs. Each feature has a weight that is trained by minimizing the ..."
Abstract

Cited by 664 (14 self)
 Add to MetaCart
the KullbackLeibler divergence between the model and the empirical distribution of the training data. A greedy algorithm determines how features are incrementally added to the field and an iterative scaling algorithm is used to estimate the optimal values of the weights. The random field models and techniques
Toward optimal feature selection
 In 13th International Conference on Machine Learning
, 1995
"... In this paper, we examine a method for feature subset selection based on Information Theory. Initially, a framework for de ning the theoretically optimal, but computationally intractable, method for feature subset selection is presented. We show that our goal should be to eliminate a feature if it g ..."
Abstract

Cited by 472 (9 self)
 Add to MetaCart
In this paper, we examine a method for feature subset selection based on Information Theory. Initially, a framework for de ning the theoretically optimal, but computationally intractable, method for feature subset selection is presented. We show that our goal should be to eliminate a feature
Efficient Variants of the ICP Algorithm
 INTERNATIONAL CONFERENCE ON 3D DIGITAL IMAGING AND MODELING
, 2001
"... The ICP (Iterative Closest Point) algorithm is widely used for geometric alignment of threedimensional models when an initial estimate of the relative pose is known. Many variants of ICP have been proposed, affecting all phases of the algorithm from the selection and matching of points to the minim ..."
Abstract

Cited by 702 (5 self)
 Add to MetaCart
The ICP (Iterative Closest Point) algorithm is widely used for geometric alignment of threedimensional models when an initial estimate of the relative pose is known. Many variants of ICP have been proposed, affecting all phases of the algorithm from the selection and matching of points
Results 1  10
of
2,048,380