• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 202,643
Next 10 →

Feasibility Study for Ellipsis Resolution in Dialogues by Machine-Learning Technique

by Yamamoto Kazuhide, Sumita Eiichiro , 1998
"... A method for resolving the ellipses that appear in Japanese dialogues is proposed. This method resolves not only the subject ellipsis, but also those in object and other grammatical cases. In this approach, a machine-learning algorithm is used to select the attributes necessary for a resolution. A d ..."
Abstract - Add to MetaCart
A method for resolving the ellipses that appear in Japanese dialogues is proposed. This method resolves not only the subject ellipsis, but also those in object and other grammatical cases. In this approach, a machine-learning algorithm is used to select the attributes necessary for a resolution. A

Feasibility Study for Ellipsis Resolution in Dialogues by Machine-Learning Technique

by Yamamoto Kazuhlde, Sumita Eiichiro
"... A method for resolving the ellipses that appear in Japanese dialogues is proposed. This method resolves not only the subject ellipsis, but also those in object and other grammatical cases. In this approach, a machine-learning algorithm is used to select the attributes necessary for a resolution. A d ..."
Abstract - Add to MetaCart
A method for resolving the ellipses that appear in Japanese dialogues is proposed. This method resolves not only the subject ellipsis, but also those in object and other grammatical cases. In this approach, a machine-learning algorithm is used to select the attributes necessary for a resolution. A

Feasibility Study for Ellipsis Resolution in Dialogues

by Machine-Learning Technique Yamamoto, Yamamoto Kazuhide, Sumita Eiichiro
"... A method for resolving the ellipses that appear in Japanese dialogues is proposed. This method resolves not only the subject ellipsis, but also those in object and other grammatical cases. In this approach, a machine-learning algorithm is used to select the attributes necessary for a resolution. ..."
Abstract - Cited by 7 (2 self) - Add to MetaCart
A method for resolving the ellipses that appear in Japanese dialogues is proposed. This method resolves not only the subject ellipsis, but also those in object and other grammatical cases. In this approach, a machine-learning algorithm is used to select the attributes necessary for a resolution.

The interdisciplinary study of coordination

by Thomas W. Malone, Kevin Crowston - ACM Computing Surveys , 1994
"... This survey characterizes an emerging research area, sometimes called coordination theory, that focuses on the interdisciplinary study of coordination. Research in this area uses and extends ideas about coordination from disciplines such as computer science, organization theory, operations research, ..."
Abstract - Cited by 773 (21 self) - Add to MetaCart
This survey characterizes an emerging research area, sometimes called coordination theory, that focuses on the interdisciplinary study of coordination. Research in this area uses and extends ideas about coordination from disciplines such as computer science, organization theory, operations research

Learning the Kernel Matrix with Semi-Definite Programming

by Gert R. G. Lanckriet, Nello Cristianini, Laurent El Ghaoui, Peter Bartlett, Michael I. Jordan , 2002
"... Kernel-based learning algorithms work by embedding the data into a Euclidean space, and then searching for linear relations among the embedded data points. The embedding is performed implicitly, by specifying the inner products between each pair of points in the embedding space. This information ..."
Abstract - Cited by 780 (22 self) - Add to MetaCart
problems in machine learning. In this paper we show how the kernel matrix can be learned from data via semi-definite programming (SDP) techniques. When applied

Semi-Supervised Learning Literature Survey

by Xiaojin Zhu , 2006
"... We review the literature on semi-supervised learning, which is an area in machine learning and more generally, artificial intelligence. There has been a whole spectrum of interesting ideas on how to learn from both labeled and unlabeled data, i.e. semi-supervised learning. This document is a chapter ..."
Abstract - Cited by 757 (8 self) - Add to MetaCart
We review the literature on semi-supervised learning, which is an area in machine learning and more generally, artificial intelligence. There has been a whole spectrum of interesting ideas on how to learn from both labeled and unlabeled data, i.e. semi-supervised learning. This document is a

Transformation-Based Error-Driven Learning and Natural Language Processing: A Case Study in Part-of-Speech Tagging

by Eric Brill - Computational Linguistics , 1995
"... this paper, we will describe a simple rule-based approach to automated learning of linguistic knowledge. This approach has been shown for a number of tasks to capture information in a clearer and more direct fashion without a compromise in performance. We present a detailed case study of this learni ..."
Abstract - Cited by 916 (7 self) - Add to MetaCart
this paper, we will describe a simple rule-based approach to automated learning of linguistic knowledge. This approach has been shown for a number of tasks to capture information in a clearer and more direct fashion without a compromise in performance. We present a detailed case study

On agent-based software engineering

by Nicholas R. Jennings, Michael Wooldridge - ARTIFICIAL INTELLIGENCE , 2000
"... Agent-oriented techniques represent an exciting new means of analysing, designing and building complex software systems. They have the potential to significantly improve current practice in software engineering and to extend the range of applications that can feasibly be tackled. Yet, to date, there ..."
Abstract - Cited by 627 (25 self) - Add to MetaCart
Agent-oriented techniques represent an exciting new means of analysing, designing and building complex software systems. They have the potential to significantly improve current practice in software engineering and to extend the range of applications that can feasibly be tackled. Yet, to date

Graphical models, exponential families, and variational inference

by Martin J. Wainwright, Michael I. Jordan , 2008
"... The formalism of probabilistic graphical models provides a unifying framework for capturing complex dependencies among random variables, and building large-scale multivariate statistical models. Graphical models have become a focus of research in many statistical, computational and mathematical fiel ..."
Abstract - Cited by 800 (26 self) - Add to MetaCart
fields, including bioinformatics, communication theory, statistical physics, combinatorial optimization, signal and image processing, information retrieval and statistical machine learning. Many problems that arise in specific instances — including the key problems of computing marginals and modes

Large margin methods for structured and interdependent output variables

by Ioannis Tsochantaridis, Thorsten Joachims, Thomas Hofmann, Yasemin Altun - JOURNAL OF MACHINE LEARNING RESEARCH , 2005
"... Learning general functional dependencies between arbitrary input and output spaces is one of the key challenges in computational intelligence. While recent progress in machine learning has mainly focused on designing flexible and powerful input representations, this paper addresses the complementary ..."
Abstract - Cited by 612 (12 self) - Add to MetaCart
Learning general functional dependencies between arbitrary input and output spaces is one of the key challenges in computational intelligence. While recent progress in machine learning has mainly focused on designing flexible and powerful input representations, this paper addresses
Next 10 →
Results 1 - 10 of 202,643
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University