• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 11 - 20 of 8,909
Next 10 →

Efficient implementation of a BDD package

by Karl S. Brace, Richard L. Rudell, Randal E. Bryant - In Proceedings of the 27th ACM/IEEE conference on Design autamation , 1991
"... Efficient manipulation of Boolean functions is an important component of many computer-aided design tasks. This paper describes a package for manipulating Boolean functions based on the reduced, ordered, binary decision diagram (ROBDD) representation. The package is based on an efficient implementat ..."
Abstract - Cited by 504 (9 self) - Add to MetaCart
implementation of the if-then-else (ITE) operator. A hash table is used to maintain a strong carwnical form in the ROBDD, and memory use is improved by merging the hash table and the ROBDD into a hybrid data structure. A memory funcfion for the recursive ITE algorithm is implemented using a hash-based cache

The pyramid match kernel: Discriminative classification with sets of image features

by Kristen Grauman, Trevor Darrell - IN ICCV , 2005
"... Discriminative learning is challenging when examples are sets of features, and the sets vary in cardinality and lack any sort of meaningful ordering. Kernel-based classification methods can learn complex decision boundaries, but a kernel over unordered set inputs must somehow solve for correspondenc ..."
Abstract - Cited by 544 (29 self) - Add to MetaCart
for use in learning algorithms whose optimal solutions are guaranteed only for Mercer kernels. We demonstrate our algorithm on object recognition tasks and show it to be accurate and dramatically faster than current approaches.

Mining Frequent Patterns without Candidate Generation: A Frequent-Pattern Tree Approach

by Jiawei Han, Jian Pei, Yiwen Yin, Runying Mao - DATA MINING AND KNOWLEDGE DISCOVERY , 2004
"... Mining frequent patterns in transaction databases, time-series databases, and many other kinds of databases has been studied popularly in data mining research. Most of the previous studies adopt an Apriori-like candidate set generation-and-test approach. However, candidate set generation is still co ..."
Abstract - Cited by 1752 (64 self) - Add to MetaCart
databases, which dramatically reduces the search space. Our performance study shows that the FP-growth method is efficient and scalable for mining both long and short frequent patterns, and is about an order of magnitude faster than the Apriori algorithm and also faster than some recently reported new

Mining Sequential Patterns: Generalizations and Performance Improvements

by Ramakrishnan Srikant, Rakesh Agrawal - RESEARCH REPORT RJ 9994, IBM ALMADEN RESEARCH , 1995
"... The problem of mining sequential patterns was recently introduced in [3]. We are given a database of sequences, where each sequence is a list of transactions ordered by transaction-time, and each transaction is a set of items. The problem is to discover all sequential patterns with a user-specified ..."
Abstract - Cited by 759 (5 self) - Add to MetaCart
these generalized sequential patterns. Empirical evaluation using synthetic and real-life data indicates that GSP is much faster than the AprioriAll algorithm presented in [3]. GSP scales linearly with the number of data-sequences, and has very good scale-up properties with respect to the average data-sequence size.

Earthquake Shakes Twitter Users: Real-time Event Detection by Social Sensors

by Takeshi Sakaki, Makoto Okazaki, Yutaka Matsuo - In Proceedings of the Nineteenth International WWW Conference (WWW2010). ACM , 2010
"... Twitter, a popular microblogging service, has received much attention recently. An important characteristic of Twitter is its real-time nature. For example, when an earthquake occurs, people make many Twitter posts (tweets) related to the earthquake, which enables detection of earthquake occurrence ..."
Abstract - Cited by 524 (4 self) - Add to MetaCart
promptly, simply by observing the tweets. As described in this paper, we investigate the real-time interaction of events such as earthquakes, in Twitter, and propose an algorithm to monitor tweets and to detect a target event. To detect a target event, we devise a classifier of tweets based on features

Loopy belief propagation for approximate inference: An empirical study. In:

by Kevin P Murphy , Yair Weiss , Michael I Jordan - Proceedings of Uncertainty in AI, , 1999
"... Abstract Recently, researchers have demonstrated that "loopy belief propagation" -the use of Pearl's polytree algorithm in a Bayesian network with loops -can perform well in the context of error-correcting codes. The most dramatic instance of this is the near Shannon-limit performanc ..."
Abstract - Cited by 676 (15 self) - Add to MetaCart
Abstract Recently, researchers have demonstrated that "loopy belief propagation" -the use of Pearl's polytree algorithm in a Bayesian network with loops -can perform well in the context of error-correcting codes. The most dramatic instance of this is the near Shannon

Sequential minimal optimization: A fast algorithm for training support vector machines

by John C. Platt - Advances in Kernel Methods-Support Vector Learning , 1999
"... This paper proposes a new algorithm for training support vector machines: Sequential Minimal Optimization, or SMO. Training a support vector machine requires the solution of a very large quadratic programming (QP) optimization problem. SMO breaks this large QP problem into a series of smallest possi ..."
Abstract - Cited by 461 (3 self) - Add to MetaCart
for linear SVMs and sparse data sets. On realworld sparse data sets, SMO can be more than 1000 times faster than the chunking algorithm. 1.

Fast approximate nearest neighbors with automatic algorithm configuration

by Marius Muja, David G. Lowe - In VISAPP International Conference on Computer Vision Theory and Applications , 2009
"... nearest-neighbors search, randomized kd-trees, hierarchical k-means tree, clustering. For many computer vision problems, the most time consuming component consists of nearest neighbor matching in high-dimensional spaces. There are no known exact algorithms for solving these high-dimensional problems ..."
Abstract - Cited by 455 (2 self) - Add to MetaCart
nearest-neighbors search, randomized kd-trees, hierarchical k-means tree, clustering. For many computer vision problems, the most time consuming component consists of nearest neighbor matching in high-dimensional spaces. There are no known exact algorithms for solving these high

Analyzing Incomplete Political Science Data: An Alternative Algorithm for Multiple Imputation

by Gary King, James Honaker, Anne Joseph, Kenneth Scheve - American Political Science Review , 2000
"... We propose a remedy for the discrepancy between the way political scientists analyze data with missing values and the recommendations of the statistics community. Methodologists and statisticians agree that "multiple imputation" is a superior approach to the problem of missing data scatter ..."
Abstract - Cited by 419 (50 self) - Add to MetaCart
to run with existing commercial statistical packages, and demanding of considerable expertise. In this paper, we adapt an existing algorithm, and use it to implement a generalpurpose, multiple imputation model for missing data. This algorithm is considerably faster and easier to use than the leading

PatternHunter: faster and more sensitive homology search

by Bin Ma, John Tromp, Ming Li - BIOINFORMATICS , 2002
"... Motivation: Genomics and proteomics studies routinely depend on homology searches based on the strategy of finding short seed matches which are then extended. The exploding genomic data growth presents a dilemma for DNA homology search techniques: increasing seed size decreases sensitivity whereas d ..."
Abstract - Cited by 353 (23 self) - Add to MetaCart
decreasing seed size slows down computation. Results: We present a new homology search algorithm "PatternHunter" that uses a novel seed model for increased sensitivity and new hit-processing techniques for significantly increased speed. At Blast levels of sensitivity, PatternHunter is able to find
Next 10 →
Results 11 - 20 of 8,909
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University