Results 1  10
of
407,211
SNOPT: An SQP Algorithm For LargeScale Constrained Optimization
, 2002
"... Sequential quadratic programming (SQP) methods have proved highly effective for solving constrained optimization problems with smooth nonlinear functions in the objective and constraints. Here we consider problems with general inequality constraints (linear and nonlinear). We assume that first deriv ..."
Abstract

Cited by 582 (23 self)
 Add to MetaCart
Sequential quadratic programming (SQP) methods have proved highly effective for solving constrained optimization problems with smooth nonlinear functions in the objective and constraints. Here we consider problems with general inequality constraints (linear and nonlinear). We assume that first
LINEAR PROGRAMMING RELAXATIONS OF QUADRATICALLY CONSTRAINED QUADRATIC PROGRAMS
"... Abstract. We investigate the use of linear programming tools for solving semidefinite programming relaxations of quadratically constrained quadratic problems. Classes of valid linear inequalities are presented, including sparse PSD cuts, and principal minors PSD cuts. Computational results based on ..."
Abstract

Cited by 12 (1 self)
 Add to MetaCart
Abstract. We investigate the use of linear programming tools for solving semidefinite programming relaxations of quadratically constrained quadratic problems. Classes of valid linear inequalities are presented, including sparse PSD cuts, and principal minors PSD cuts. Computational results based
Just Relax: Convex Programming Methods for Identifying Sparse Signals in Noise
, 2006
"... This paper studies a difficult and fundamental problem that arises throughout electrical engineering, applied mathematics, and statistics. Suppose that one forms a short linear combination of elementary signals drawn from a large, fixed collection. Given an observation of the linear combination that ..."
Abstract

Cited by 496 (2 self)
 Add to MetaCart
. This paper studies a method called convex relaxation, which attempts to recover the ideal sparse signal by solving a convex program. This approach is powerful because the optimization can be completed in polynomial time with standard scientific software. The paper provides general conditions which ensure
On convex relaxations for quadratically constrained quadratic programming
 Mathematical Programming (Series B
, 2012
"... We consider convex relaxations for the problem of minimizing a (possibly nonconvex) quadratic objective subject to linear and (possibly nonconvex) quadratic constraints. Let F denote the feasible region for the linear constraints. We first show that replacing the quadratic objective and constraint f ..."
Abstract

Cited by 13 (0 self)
 Add to MetaCart
of the convex hull of the quadratic form that imposes semidefiniteness and linear constraints on diagonal terms. Finally, we show that the use of a large class of “D.C. ” underestimators is dominated by a relaxation that combines semidefiniteness with RLT constraints.
Constrained model predictive control: Stability and optimality
 AUTOMATICA
, 2000
"... Model predictive control is a form of control in which the current control action is obtained by solving, at each sampling instant, a finite horizon openloop optimal control problem, using the current state of the plant as the initial state; the optimization yields an optimal control sequence and t ..."
Abstract

Cited by 696 (15 self)
 Add to MetaCart
important because efficiency demands operating points on or close to the boundary of the set of admissible states and controls. In this review, we focus on model predictive control of constrained systems, both linear and nonlinear and discuss only briefly model predictive control of unconstrained nonlinear
Faster, but Weaker, Relaxations for Quadratically Constrained Quadratic Programs
, 2013
"... We introduce a new relaxation framework for nonconvex quadratically constrained quadratic programs (QCQPs). In contrast to existing relaxations based on semidefinite programming (SDP), our relaxations incorporate features of both SDP and second order cone programming (SOCP) and, as a result, solve m ..."
Abstract
 Add to MetaCart
We introduce a new relaxation framework for nonconvex quadratically constrained quadratic programs (QCQPs). In contrast to existing relaxations based on semidefinite programming (SDP), our relaxations incorporate features of both SDP and second order cone programming (SOCP) and, as a result, solve
On Efficient Semidefinite Relaxations for Quadratically Constrained Quadratic Programming
"... presented to the University of Waterloo ..."
A Limited Memory Algorithm for Bound Constrained Optimization
 SIAM Journal on Scientific Computing
, 1994
"... An algorithm for solving large nonlinear optimization problems with simple bounds is described. ..."
Abstract

Cited by 557 (9 self)
 Add to MetaCart
An algorithm for solving large nonlinear optimization problems with simple bounds is described.
Semidefinite relaxation of quadratic optimization problems
 SIGNAL PROCESSING MAGAZINE, IEEE
, 2010
"... n recent years, the semidefinite relaxation (SDR) technique has been at the center of some of very exciting developments in the area of signal processing and communications, and it has shown great significance and relevance on a variety of applications. Roughly speaking, SDR is a powerful, computa ..."
Abstract

Cited by 150 (9 self)
 Add to MetaCart
, computationally efficient approximation technique for a host of very difficult optimization problems. In particular, it can be applied to many nonconvex quadratically constrained quadratic programs (QCQPs) in an almost mechanical fashion, including the following problem: min x[Rn x T
Improved Approximation Algorithms for Maximum Cut and Satisfiability Problems Using Semidefinite Programming
 Journal of the ACM
, 1995
"... We present randomized approximation algorithms for the maximum cut (MAX CUT) and maximum 2satisfiability (MAX 2SAT) problems that always deliver solutions of expected value at least .87856 times the optimal value. These algorithms use a simple and elegant technique that randomly rounds the solution ..."
Abstract

Cited by 1231 (13 self)
 Add to MetaCart
the solution to a nonlinear programming relaxation. This relaxation can be interpreted both as a semidefinite program and as an eigenvalue minimization problem. The best previously known approximation algorithms for these problems had performance guarantees of ...
Results 1  10
of
407,211