Results 1  10
of
235,907
Fast Parallel Algorithms for ShortRange Molecular Dynamics
 JOURNAL OF COMPUTATIONAL PHYSICS
, 1995
"... Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of interatomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dyn ..."
Abstract

Cited by 622 (6 self)
 Add to MetaCart
Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of interatomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular
A Fast Algorithm for Particle Simulations
, 1987
"... this paper to the case where the potential (or force) at a point is a sum of pairwise An algorithm is presented for the rapid evaluation of the potential and force fields in systems involving large numbers of particles interactions. More specifically, we consider potentials of whose interactions a ..."
Abstract

Cited by 1145 (19 self)
 Add to MetaCart
this paper to the case where the potential (or force) at a point is a sum of pairwise An algorithm is presented for the rapid evaluation of the potential and force fields in systems involving large numbers of particles interactions. More specifically, we consider potentials of whose interactions are Coulombic or gravitational in nature. For a the form system of N particles, an amount of work of the order O(N 2 ) has traditionally been required to evaluate all pairwise interactions, un F5F far 1 (F near 1F external ), less some approximation or truncation method is used. The algorithm of the present paper requires an amount of work proportional to N to evaluate all interactions to within roundoff error, making it where F near (when present) is a rapidly decaying potential con
FAST VOLUME RENDERING USING A SHEARWARP FACTORIZATION OF THE VIEWING TRANSFORMATION
, 1995
"... Volume rendering is a technique for visualizing 3D arrays of sampled data. It has applications in areas such as medical imaging and scientific visualization, but its use has been limited by its high computational expense. Early implementations of volume rendering used bruteforce techniques that req ..."
Abstract

Cited by 541 (2 self)
 Add to MetaCart
that require on the order of 100 seconds to render typical data sets on a workstation. Algorithms with optimizations that exploit coherence in the data have reduced rendering times to the range of ten seconds but are still not fast enough for interactive visualization applications. In this thesis we present a
A fast and high quality multilevel scheme for partitioning irregular graphs
 SIAM JOURNAL ON SCIENTIFIC COMPUTING
, 1998
"... Recently, a number of researchers have investigated a class of graph partitioning algorithms that reduce the size of the graph by collapsing vertices and edges, partition the smaller graph, and then uncoarsen it to construct a partition for the original graph [Bui and Jones, Proc. ..."
Abstract

Cited by 1173 (16 self)
 Add to MetaCart
Recently, a number of researchers have investigated a class of graph partitioning algorithms that reduce the size of the graph by collapsing vertices and edges, partition the smaller graph, and then uncoarsen it to construct a partition for the original graph [Bui and Jones, Proc.
The Vector Field Histogram  Fast Obstacle Avoidance For Mobile Robots
 IEEE JOURNAL OF ROBOTICS AND AUTOMATION
, 1991
"... A new realtime obstacle avoidance method for mobile robots has been developed and implemented. This method, named the vector field histogram(VFH), permits the detection of unknown obstacles and avoids collisions while simultaneously steering the mobile robot toward the target. The VFH method uses a ..."
Abstract

Cited by 470 (23 self)
 Add to MetaCart
A new realtime obstacle avoidance method for mobile robots has been developed and implemented. This method, named the vector field histogram(VFH), permits the detection of unknown obstacles and avoids collisions while simultaneously steering the mobile robot toward the target. The VFH method uses a twodimensional Cartesian histogram gridas a world model. This world model is updated continuously with range data sampled by onboard range sensors. The VFH method subsequently employs a twostage datareduction process in order to compute the desired control commands for the vehicle. In the first stage the histogram gridis reduced to a onedimensional polar histogramthat is constructed around the robot's momentary location. Each sector in the polar histogramcontains a value representing the polar obstacle densityin that direction. In the second stage, the algorithm selects the most suitable sector from among all polar histogram sectors with a low polar obstacle density, and the steering of the robot is aligned with that direction. Experimental results from a mobile robot traversing densely cluttered obstacle courses in smooth and continuous motion and at an average speed of 0.6 0.7m/sec demonstrate the power of the VFH method.
Understanding Normal and Impaired Word Reading: Computational Principles in QuasiRegular Domains
 PSYCHOLOGICAL REVIEW
, 1996
"... We develop a connectionist approach to processing in quasiregular domains, as exemplified by English word reading. A consideration of the shortcomings of a previous implementation (Seidenberg & McClelland, 1989, Psych. Rev.) in reading nonwords leads to the development of orthographic and phono ..."
Abstract

Cited by 583 (94 self)
 Add to MetaCart
in subsequent simulations, including an attractor network that reproduces the naming latency data directly in its time to settle on a response. Further analyses of the network's ability to reproduce data on impaired reading in surface dyslexia support a view of the reading system that incorporates a graded
Globally Consistent Range Scan Alignment for Environment Mapping
 AUTONOMOUS ROBOTS
, 1997
"... A robot exploring an unknown environmentmay need to build a world model from sensor measurements. In order to integrate all the frames of sensor data, it is essential to align the data properly. An incremental approach has been typically used in the past, in which each local frame of data is alig ..."
Abstract

Cited by 536 (8 self)
 Add to MetaCart
frames of measurements (range scans), together with the related issues of representation and manipulation of spatial uncertainties. Our approachistomaintain all the local frames of data as well as the relative spatial relationships between local frames. These spatial relationships are modeled
The Anatomy of a ContextAware Application
 WIRELESS NETWORKS, VOL
, 1999
"... We describe a platform for contextaware computing which enables applications to follow mobile users as they move around a building. The platform is particularly suitable for richly equipped, networked environments. The only item a user is required to carry is a small sensor tag, which identifies th ..."
Abstract

Cited by 532 (3 self)
 Add to MetaCart
them to the system and locates them accurately in three dimensions. The platform builds a dynamic model of the environment using these location sensors and resource information gathered by telemetry software, and presents it in a form suitable for application programmers. Use of the platform
OPTICS: Ordering Points To Identify the Clustering Structure
, 1999
"... Cluster analysis is a primary method for database mining. It is either used as a standalone tool to get insight into the distribution of a data set, e.g. to focus further analysis and data processing, or as a preprocessing step for other algorithms operating on the detected clusters. Almost all of ..."
Abstract

Cited by 511 (49 self)
 Add to MetaCart
of the wellknown clustering algorithms require input parameters which are hard to determine but have a significant influence on the clustering result. Furthermore, for many realdata sets there does not even exist a global parameter setting for which the result of the clustering algorithm describes
Fronts propagating with curvature dependent speed: algorithms based on Hamilton–Jacobi formulations
 Journal of Computational Physics
, 1988
"... We devise new numerical algorithms, called PSC algorithms, for following fronts propagating with curvaturedependent speed. The speed may be an arbitrary function of curvature, and the front can also be passively advected by an underlying flow. These algorithms approximate the equations of motion, w ..."
Abstract

Cited by 1183 (64 self)
 Add to MetaCart
, which resemble HamiltonJacobi equations with parabolic righthandsides, by using techniques from the hyperbolic conservation laws. Nonoscillatory schemes of various orders of accuracy are used to solve the equations, providing methods that accurately capture the formation of sharp gradients and cusps
Results 1  10
of
235,907