Results 1  10
of
300,887
Fast algorithms for robust classification with Bayesian nets
, 2005
"... We focus on a wellknown classification task with expert systems based on Bayesian networks: predicting the state of a target variable given an incomplete observation of the other variables in the network, i.e., an observation of a subset of all the possible variables. To provide conclusions robust ..."
Abstract

Cited by 2 (2 self)
 Add to MetaCart
first that the general problem is NPhard, thus establishing a fundamental limit to the possibility to do robust classification efficiently. Then we define a wide subclass of Bayesian networks that does admit efficient computation. We show this by developing a new classification algorithm for such a
4th International Symposium on Imprecise Probabilities and Their Applications, Pittsburgh, Pennsylvania, 2005 Fast Algorithms for Robust Classification with Bayesian Nets
"... We focus on a wellknown classification task with expert systems based on Bayesian networks: predicting the state of a target variable given an incomplete observation of the other variables in the network, i.e., an observation of a subset of all the possible variables. To provide conclusions robust ..."
Abstract
 Add to MetaCart
. We show first that the general problem is NPhard, thus establishing a fundamental limit to the possibility to do robust classification efficiently. Then we define a wide subclass of Bayesian networks that does admit efficient computation. We show this by developing a new classification algorithm
A fast learning algorithm for deep belief nets
 Neural Computation
, 2006
"... We show how to use “complementary priors ” to eliminate the explaining away effects that make inference difficult in denselyconnected belief nets that have many hidden layers. Using complementary priors, we derive a fast, greedy algorithm that can learn deep, directed belief networks one layer at a ..."
Abstract

Cited by 930 (51 self)
 Add to MetaCart
We show how to use “complementary priors ” to eliminate the explaining away effects that make inference difficult in denselyconnected belief nets that have many hidden layers. Using complementary priors, we derive a fast, greedy algorithm that can learn deep, directed belief networks one layer
Planning Algorithms
, 2004
"... This book presents a unified treatment of many different kinds of planning algorithms. The subject lies at the crossroads between robotics, control theory, artificial intelligence, algorithms, and computer graphics. The particular subjects covered include motion planning, discrete planning, planning ..."
Abstract

Cited by 1108 (51 self)
 Add to MetaCart
This book presents a unified treatment of many different kinds of planning algorithms. The subject lies at the crossroads between robotics, control theory, artificial intelligence, algorithms, and computer graphics. The particular subjects covered include motion planning, discrete planning
Bayesian Network Classifiers
, 1997
"... Recent work in supervised learning has shown that a surprisingly simple Bayesian classifier with strong assumptions of independence among features, called naive Bayes, is competitive with stateoftheart classifiers such as C4.5. This fact raises the question of whether a classifier with less restr ..."
Abstract

Cited by 788 (23 self)
 Add to MetaCart
Recent work in supervised learning has shown that a surprisingly simple Bayesian classifier with strong assumptions of independence among features, called naive Bayes, is competitive with stateoftheart classifiers such as C4.5. This fact raises the question of whether a classifier with less
Robust Monte Carlo Localization for Mobile Robots
, 2001
"... Mobile robot localization is the problem of determining a robot's pose from sensor data. This article presents a family of probabilistic localization algorithms known as Monte Carlo Localization (MCL). MCL algorithms represent a robot's belief by a set of weighted hypotheses (samples), whi ..."
Abstract

Cited by 826 (88 self)
 Add to MetaCart
), which approximate the posterior under a common Bayesian formulation of the localization problem. Building on the basic MCL algorithm, this article develops a more robust algorithm called MixtureMCL, which integrates two complimentary ways of generating samples in the estimation. To apply this algorithm
On Bayesian analysis of mixtures with an unknown number of components
 INSTITUTE OF INTERNATIONAL ECONOMICS PROJECT ON INTERNATIONAL COMPETITION POLICY,&QUOT; COM/DAFFE/CLP/TD(94)42
, 1997
"... ..."
Instancebased learning algorithms
 Machine Learning
, 1991
"... Abstract. Storing and using specific instances improves the performance of several supervised learning algorithms. These include algorithms that learn decision trees, classification rules, and distributed networks. However, no investigation has analyzed algorithms that use only specific instances to ..."
Abstract

Cited by 1359 (18 self)
 Add to MetaCart
Abstract. Storing and using specific instances improves the performance of several supervised learning algorithms. These include algorithms that learn decision trees, classification rules, and distributed networks. However, no investigation has analyzed algorithms that use only specific instances
An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants
 MACHINE LEARNING
, 1999
"... Methods for voting classification algorithms, such as Bagging and AdaBoost, have been shown to be very successful in improving the accuracy of certain classifiers for artificial and realworld datasets. We review these algorithms and describe a large empirical study comparing several variants in co ..."
Abstract

Cited by 695 (2 self)
 Add to MetaCart
Methods for voting classification algorithms, such as Bagging and AdaBoost, have been shown to be very successful in improving the accuracy of certain classifiers for artificial and realworld datasets. We review these algorithms and describe a large empirical study comparing several variants
FAST VOLUME RENDERING USING A SHEARWARP FACTORIZATION OF THE VIEWING TRANSFORMATION
, 1995
"... Volume rendering is a technique for visualizing 3D arrays of sampled data. It has applications in areas such as medical imaging and scientific visualization, but its use has been limited by its high computational expense. Early implementations of volume rendering used bruteforce techniques that req ..."
Abstract

Cited by 541 (2 self)
 Add to MetaCart
that require on the order of 100 seconds to render typical data sets on a workstation. Algorithms with optimizations that exploit coherence in the data have reduced rendering times to the range of ten seconds but are still not fast enough for interactive visualization applications. In this thesis we present a
Results 1  10
of
300,887