Results 1  10
of
1,665,792
Fast Effective Rule Induction
, 1995
"... Many existing rule learning systems are computationally expensive on large noisy datasets. In this paper we evaluate the recentlyproposed rule learning algorithm IREP on a large and diverse collection of benchmark problems. We show that while IREP is extremely efficient, it frequently gives error r ..."
Abstract

Cited by 1257 (21 self)
 Add to MetaCart
Many existing rule learning systems are computationally expensive on large noisy datasets. In this paper we evaluate the recentlyproposed rule learning algorithm IREP on a large and diverse collection of benchmark problems. We show that while IREP is extremely efficient, it frequently gives error rates higher than those of C4.5 and C4.5rules. We then propose a number of modifications resulting in an algorithm RIPPERk that is very competitive with C4.5rules with respect to error rates, but much more efficient on large samples. RIPPERk obtains error rates lower than or equivalent to C4.5rules on 22 of 37 benchmark problems, scales nearly linearly with the number of training examples, and can efficiently process noisy datasets containing hundreds of thousands of examples.
Fast unfolding of communities in large networks
, 2008
"... Fast unfolding of communities in large networks ..."
A Fast File System for UNIX
 ACM Transactions on Computer Systems
, 1984
"... A reimplementation of the UNIX file system is described. The reimplementation provides substantially higher throughput rates by using more flexible allocation policies that allow better locality of reference and can be adapted to a wide range of peripheral and processor characteristics. The new file ..."
Abstract

Cited by 566 (6 self)
 Add to MetaCart
file system clusters data that is sequentially accessed and provides two block sizes to allow fast access to large files while not wasting large amounts of space for small files. File access rates of up to ten times faster than the traditional UNIX file system are experienced. Long needed enhancements
A Fast Algorithm for Particle Simulations
, 1987
"... this paper to the case where the potential (or force) at a point is a sum of pairwise An algorithm is presented for the rapid evaluation of the potential and force fields in systems involving large numbers of particles interactions. More specifically, we consider potentials of whose interactions a ..."
Abstract

Cited by 1145 (19 self)
 Add to MetaCart
this paper to the case where the potential (or force) at a point is a sum of pairwise An algorithm is presented for the rapid evaluation of the potential and force fields in systems involving large numbers of particles interactions. More specifically, we consider potentials of whose interactions are Coulombic or gravitational in nature. For a the form system of N particles, an amount of work of the order O(N 2 ) has traditionally been required to evaluate all pairwise interactions, un F5F far 1 (F near 1F external ), less some approximation or truncation method is used. The algorithm of the present paper requires an amount of work proportional to N to evaluate all interactions to within roundoff error, making it where F near (when present) is a rapidly decaying potential con
Fast Algorithms for Mining Association Rules
, 1994
"... We consider the problem of discovering association rules between items in a large database of sales transactions. We present two new algorithms for solving this problem that are fundamentally different from the known algorithms. Empirical evaluation shows that these algorithms outperform the known a ..."
Abstract

Cited by 3551 (15 self)
 Add to MetaCart
We consider the problem of discovering association rules between items in a large database of sales transactions. We present two new algorithms for solving this problem that are fundamentally different from the known algorithms. Empirical evaluation shows that these algorithms outperform the known algorithms by factors ranging from three for small problems to more than an order of magnitude for large problems. We also show how the best features of the two proposed algorithms can be combined into a hybrid algorithm, called AprioriHybrid. Scaleup experiments show that AprioriHybrid scales linearly with the number of transactions. AprioriHybrid also has excellent scaleup properties with respect to the transaction size and the number of items in the database.
Fast probabilistic algorithms for verification of polynomial identities
 J. ACM
, 1980
"... ABSTRACT The starthng success of the RabmStrassenSolovay pnmahty algorithm, together with the intriguing foundattonal posstbthty that axtoms of randomness may constttute a useful fundamental source of mathemaucal truth independent of the standard axmmaUc structure of mathemaUcs, suggests a wgorous ..."
Abstract

Cited by 533 (1 self)
 Add to MetaCart
wgorous search for probabdisuc algonthms In dlustratmn of this observaUon, vanous fast probabdlsttc algonthms, with probability of correctness guaranteed a prion, are presented for testing polynomial ldentmes and propemes of systems of polynomials. Ancdlary fast algorithms for calculating resultants
A fast iterative shrinkagethresholding algorithm with application to . . .
, 2009
"... We consider the class of Iterative ShrinkageThresholding Algorithms (ISTA) for solving linear inverse problems arising in signal/image processing. This class of methods is attractive due to its simplicity, however, they are also known to converge quite slowly. In this paper we present a Fast Iterat ..."
Abstract

Cited by 1055 (8 self)
 Add to MetaCart
We consider the class of Iterative ShrinkageThresholding Algorithms (ISTA) for solving linear inverse problems arising in signal/image processing. This class of methods is attractive due to its simplicity, however, they are also known to converge quite slowly. In this paper we present a Fast
A fast learning algorithm for deep belief nets
 Neural Computation
, 2006
"... We show how to use “complementary priors ” to eliminate the explaining away effects that make inference difficult in denselyconnected belief nets that have many hidden layers. Using complementary priors, we derive a fast, greedy algorithm that can learn deep, directed belief networks one layer at a ..."
Abstract

Cited by 930 (51 self)
 Add to MetaCart
We show how to use “complementary priors ” to eliminate the explaining away effects that make inference difficult in denselyconnected belief nets that have many hidden layers. Using complementary priors, we derive a fast, greedy algorithm that can learn deep, directed belief networks one layer
Reasoning the fast and frugal way: Models of bounded rationality
 Psychological Review
, 1996
"... Humans and animals make inferences about the world under limited time and knowledge. In contrast, many models of rational inference treat the mind as a Laplacean Demon, equipped with unlimited time, knowledge, and computational might. Following H. Simon’s notion of satisficing, the authors have prop ..."
Abstract

Cited by 583 (28 self)
 Add to MetaCart
proposed a family of algorithms based on a simple psychological mechanism: one reason decision making. These fast and frugal algorithms violate fundamental tenets of classical rationality: They neither look up nor integrate all information. By computer simulation, the authors held a competition between
Results 1  10
of
1,665,792