• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 8,277
Next 10 →

The Nature of Statistical Learning Theory

by Vladimir N. Vapnik , 1999
"... Statistical learning theory was introduced in the late 1960’s. Until the 1990’s it was a purely theoretical analysis of the problem of function estimation from a given collection of data. In the middle of the 1990’s new types of learning algorithms (called support vector machines) based on the deve ..."
Abstract - Cited by 13236 (32 self) - Add to MetaCart
Statistical learning theory was introduced in the late 1960’s. Until the 1990’s it was a purely theoretical analysis of the problem of function estimation from a given collection of data. In the middle of the 1990’s new types of learning algorithms (called support vector machines) based

A Survey on Transfer Learning

by Sinno Jialin Pan, Qiang Yang
"... A major assumption in many machine learning and data mining algorithms is that the training and future data must be in the same feature space and have the same distribution. However, in many real-world applications, this assumption may not hold. For example, we sometimes have a classification task i ..."
Abstract - Cited by 459 (24 self) - Add to MetaCart
A major assumption in many machine learning and data mining algorithms is that the training and future data must be in the same feature space and have the same distribution. However, in many real-world applications, this assumption may not hold. For example, we sometimes have a classification task

A learning algorithm for Boltzmann machines

by H. Ackley, E. Hinton, J. Sejnowski - Cognitive Science , 1985
"... The computotionol power of massively parallel networks of simple processing elements resides in the communication bandwidth provided by the hardware connections between elements. These connections con allow a significant fraction of the knowledge of the system to be applied to an instance of a probl ..."
Abstract - Cited by 584 (13 self) - Add to MetaCart
to a gen-eral learning rule for modifying the connection strengths so as to incorporate knowledge obout o task domain in on efficient way. We describe some simple examples in which the learning algorithm creates internal representations thot ore demonstrobly the most efficient way of using

Machine Learning in Automated Text Categorization

by Fabrizio Sebastiani - ACM COMPUTING SURVEYS , 2002
"... The automated categorization (or classification) of texts into predefined categories has witnessed a booming interest in the last ten years, due to the increased availability of documents in digital form and the ensuing need to organize them. In the research community the dominant approach to this p ..."
Abstract - Cited by 1734 (22 self) - Add to MetaCart
to this problem is based on machine learning techniques: a general inductive process automatically builds a classifier by learning, from a set of preclassified documents, the characteristics of the categories. The advantages of this approach over the knowledge engineering approach (consisting in the manual

Multitask Learning,”

by Rich Caruana , Lorien Pratt , Sebastian Thrun , 1997
"... Abstract. Multitask Learning is an approach to inductive transfer that improves generalization by using the domain information contained in the training signals of related tasks as an inductive bias. It does this by learning tasks in parallel while using a shared representation; what is learned for ..."
Abstract - Cited by 677 (6 self) - Add to MetaCart
Abstract. Multitask Learning is an approach to inductive transfer that improves generalization by using the domain information contained in the training signals of related tasks as an inductive bias. It does this by learning tasks in parallel while using a shared representation; what is learned

Survey of clustering algorithms

by Rui Xu, Donald Wunsch II - IEEE TRANSACTIONS ON NEURAL NETWORKS , 2005
"... Data analysis plays an indispensable role for understanding various phenomena. Cluster analysis, primitive exploration with little or no prior knowledge, consists of research developed across a wide variety of communities. The diversity, on one hand, equips us with many tools. On the other hand, the ..."
Abstract - Cited by 499 (4 self) - Add to MetaCart
, the profusion of options causes confusion. We survey clustering algorithms for data sets appearing in statistics, computer science, and machine learning, and illustrate their applications in some benchmark data sets, the traveling salesman problem, and bioinformatics, a new field attracting intensive efforts

Support Vector Machine Active Learning with Applications to Text Classification

by Simon Tong , Daphne Koller - JOURNAL OF MACHINE LEARNING RESEARCH , 2001
"... Support vector machines have met with significant success in numerous real-world learning tasks. However, like most machine learning algorithms, they are generally applied using a randomly selected training set classified in advance. In many settings, we also have the option of using pool-based acti ..."
Abstract - Cited by 735 (5 self) - Add to MetaCart
Support vector machines have met with significant success in numerous real-world learning tasks. However, like most machine learning algorithms, they are generally applied using a randomly selected training set classified in advance. In many settings, we also have the option of using pool-based

Online Learning with Kernels

by Jyrki Kivinen, Alexander J. Smola, Robert C. Williamson , 2003
"... Kernel based algorithms such as support vector machines have achieved considerable success in various problems in the batch setting where all of the training data is available in advance. Support vector machines combine the so-called kernel trick with the large margin idea. There has been little u ..."
Abstract - Cited by 2831 (123 self) - Add to MetaCart
Kernel based algorithms such as support vector machines have achieved considerable success in various problems in the batch setting where all of the training data is available in advance. Support vector machines combine the so-called kernel trick with the large margin idea. There has been little

Learning the Kernel Matrix with Semi-Definite Programming

by Gert R. G. Lanckriet, Nello Cristianini, Laurent El Ghaoui, Peter Bartlett, Michael I. Jordan , 2002
"... Kernel-based learning algorithms work by embedding the data into a Euclidean space, and then searching for linear relations among the embedded data points. The embedding is performed implicitly, by specifying the inner products between each pair of points in the embedding space. This information ..."
Abstract - Cited by 775 (21 self) - Add to MetaCart
Kernel-based learning algorithms work by embedding the data into a Euclidean space, and then searching for linear relations among the embedded data points. The embedding is performed implicitly, by specifying the inner products between each pair of points in the embedding space. This information

Manifold regularization: A geometric framework for learning from labeled and unlabeled examples

by Mikhail Belkin, Partha Niyogi, Vikas Sindhwani - JOURNAL OF MACHINE LEARNING RESEARCH , 2006
"... We propose a family of learning algorithms based on a new form of regularization that allows us to exploit the geometry of the marginal distribution. We focus on a semi-supervised framework that incorporates labeled and unlabeled data in a general-purpose learner. Some transductive graph learning al ..."
Abstract - Cited by 578 (16 self) - Add to MetaCart
We propose a family of learning algorithms based on a new form of regularization that allows us to exploit the geometry of the marginal distribution. We focus on a semi-supervised framework that incorporates labeled and unlabeled data in a general-purpose learner. Some transductive graph learning
Next 10 →
Results 1 - 10 of 8,277
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University