Results 1  10
of
540,882
A New Method for Solving Hard Satisfiability Problems
 AAAI
, 1992
"... We introduce a greedy local search procedure called GSAT for solving propositional satisfiability problems. Our experiments show that this procedure can be used to solve hard, randomly generated problems that are an order of magnitude larger than those that can be handled by more traditional approac ..."
Abstract

Cited by 734 (21 self)
 Add to MetaCart
We introduce a greedy local search procedure called GSAT for solving propositional satisfiability problems. Our experiments show that this procedure can be used to solve hard, randomly generated problems that are an order of magnitude larger than those that can be handled by more traditional
Cognitive load during problem solving: effects on learning
 COGNITIVE SCIENCE
, 1988
"... Considerable evidence indicates that domain specific knowledge in the form of schemes is the primary factor distinguishing experts from novices in problemsolving skill. Evidence that conventional problemsolving activity is not effective in schema acquisition is also accumulating. It is suggested t ..."
Abstract

Cited by 603 (13 self)
 Add to MetaCart
Considerable evidence indicates that domain specific knowledge in the form of schemes is the primary factor distinguishing experts from novices in problemsolving skill. Evidence that conventional problemsolving activity is not effective in schema acquisition is also accumulating. It is suggested
PDDL2.1: An Extension to PDDL for Expressing Temporal Planning Domains
, 2003
"... In recent years research in the planning community has moved increasingly towards application of planners to realistic problems involving both time and many types of resources. For example, interest in planning demonstrated by the space research community has inspired work in observation scheduling, ..."
Abstract

Cited by 601 (41 self)
 Add to MetaCart
the development of a modelling language capable of expressing temporal and numeric properties of planning domains. In this paper we describe the language, PDDL2.1, that was used in the competition. We describe the syntax of the language, its formal semantics and the validation of concurrent plans. We observe
A Comparative Analysis of Methodologies for Database Schema Integration
 ACM COMPUTING SURVEYS
, 1986
"... One of the fundamental principles of the database approach is that a database allows a nonredundant, unified representation of all data managed in an organization. This is achieved only when methodologies are available to support integration across organizational and application boundaries.
Metho ..."
Abstract

Cited by 642 (10 self)
 Add to MetaCart
One of the fundamental principles of the database approach is that a database allows a nonredundant, unified representation of all data managed in an organization. This is achieved only when methodologies are available to support integration across organizational and application boundaries
Improved Approximation Algorithms for Maximum Cut and Satisfiability Problems Using Semidefinite Programming
 Journal of the ACM
, 1995
"... We present randomized approximation algorithms for the maximum cut (MAX CUT) and maximum 2satisfiability (MAX 2SAT) problems that always deliver solutions of expected value at least .87856 times the optimal value. These algorithms use a simple and elegant technique that randomly rounds the solution ..."
Abstract

Cited by 1231 (13 self)
 Add to MetaCart
We present randomized approximation algorithms for the maximum cut (MAX CUT) and maximum 2satisfiability (MAX 2SAT) problems that always deliver solutions of expected value at least .87856 times the optimal value. These algorithms use a simple and elegant technique that randomly rounds
Sequential data assimilation with a nonlinear quasigeostrophic model using Monte Carlo methods to forecast error statistics
 J. Geophys. Res
, 1994
"... . A new sequential data assimilation method is discussed. It is based on forecasting the error statistics using Monte Carlo methods, a better alternative than solving the traditional and computationally extremely demanding approximate error covariance equation used in the extended Kalman filter. The ..."
Abstract

Cited by 782 (22 self)
 Add to MetaCart
. A new sequential data assimilation method is discussed. It is based on forecasting the error statistics using Monte Carlo methods, a better alternative than solving the traditional and computationally extremely demanding approximate error covariance equation used in the extended Kalman filter
Constrained model predictive control: Stability and optimality
 AUTOMATICA
, 2000
"... Model predictive control is a form of control in which the current control action is obtained by solving, at each sampling instant, a finite horizon openloop optimal control problem, using the current state of the plant as the initial state; the optimization yields an optimal control sequence and t ..."
Abstract

Cited by 696 (15 self)
 Add to MetaCart
from an extensive literature essential principles that ensure stability and use these to present a concise characterization of most of the model predictive controllers that have been proposed in the literature. In some cases the finite horizon optimal control problem solved online is exactly
Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of nalkanes
 J. Comput. Phys
, 1977
"... A numerical algorithm integrating the 3N Cartesian equations of motion of a system of N points subject to holonomic constraints is formulated. The relations of constraint remain perfectly fulfilled at each step of the trajectory despite the approximate character of numerical integration. The method ..."
Abstract

Cited by 682 (6 self)
 Add to MetaCart
model, (b) the derivation of the equations of motion of the system and (c) the choice of an efficient algorithm for the numerical integration of these equations. In polyatomic molecules, the fast internal vibrations are usually decoupled from
ModelBased Clustering, Discriminant Analysis, and Density Estimation
 JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
, 2000
"... Cluster analysis is the automated search for groups of related observations in a data set. Most clustering done in practice is based largely on heuristic but intuitively reasonable procedures and most clustering methods available in commercial software are also of this type. However, there is little ..."
Abstract

Cited by 557 (28 self)
 Add to MetaCart
, there is little systematic guidance associated with these methods for solving important practical questions that arise in cluster analysis, such as \How many clusters are there?", "Which clustering method should be used?" and \How should outliers be handled?". We outline a general methodology
Results 1  10
of
540,882