Results 1  10
of
93,390
Graphical models, exponential families, and variational inference
, 2008
"... The formalism of probabilistic graphical models provides a unifying framework for capturing complex dependencies among random variables, and building largescale multivariate statistical models. Graphical models have become a focus of research in many statistical, computational and mathematical fiel ..."
Abstract

Cited by 800 (26 self)
 Add to MetaCart
of probability distributions — are best studied in the general setting. Working with exponential family representations, and exploiting the conjugate duality between the cumulant function and the entropy for exponential families, we develop general variational representations of the problems of computing
Consensus and cooperation in networked multiagent systems
 PROCEEDINGS OF THE IEEE
"... This paper provides a theoretical framework for analysis of consensus algorithms for multiagent networked systems with an emphasis on the role of directed information flow, robustness to changes in network topology due to link/node failures, timedelays, and performance guarantees. An overview of ..."
Abstract

Cited by 772 (2 self)
 Add to MetaCart
This paper provides a theoretical framework for analysis of consensus algorithms for multiagent networked systems with an emphasis on the role of directed information flow, robustness to changes in network topology due to link/node failures, timedelays, and performance guarantees. An overview
Statistical mechanics of complex networks
 Rev. Mod. Phys
"... Complex networks describe a wide range of systems in nature and society, much quoted examples including the cell, a network of chemicals linked by chemical reactions, or the Internet, a network of routers and computers connected by physical links. While traditionally these systems were modeled as ra ..."
Abstract

Cited by 2083 (10 self)
 Add to MetaCart
Complex networks describe a wide range of systems in nature and society, much quoted examples including the cell, a network of chemicals linked by chemical reactions, or the Internet, a network of routers and computers connected by physical links. While traditionally these systems were modeled
Constrained model predictive control: Stability and optimality
 AUTOMATICA
, 2000
"... Model predictive control is a form of control in which the current control action is obtained by solving, at each sampling instant, a finite horizon openloop optimal control problem, using the current state of the plant as the initial state; the optimization yields an optimal control sequence and t ..."
Abstract

Cited by 696 (15 self)
 Add to MetaCart
and/or timevarying systems. We concentrate our attention on research dealing with stability and optimality; in these areas the subject has developed, in our opinion, to a stage where it has achieved sufficient maturity to warrant the active interest of researchers in nonlinear control. We distill
Network Time Protocol (Version 3) Specification, Implementation and Analysis
, 1992
"... Note: This document consists of an approximate rendering in ASCII of the PostScript document of the same name. It is provided for convenience and for use in searches, etc. However, most tables, figures, equations and captions have not been rendered and the pagination and section headings are not ava ..."
Abstract

Cited by 522 (18 self)
 Add to MetaCart
Note: This document consists of an approximate rendering in ASCII of the PostScript document of the same name. It is provided for convenience and for use in searches, etc. However, most tables, figures, equations and captions have not been rendered and the pagination and section headings
Routing Techniques in Wireless Sensor Networks: A Survey
 IEEE Wireless Communications
, 2004
"... Wireless Sensor Networks (WSNs) consist of small nodes with sensing, computation, and wireless communications capabilities. Many routing, power management, and data dissemination protocols have been specifically designed for WSNs where energy awareness is an essential design issue. The focus, howeve ..."
Abstract

Cited by 704 (2 self)
 Add to MetaCart
Wireless Sensor Networks (WSNs) consist of small nodes with sensing, computation, and wireless communications capabilities. Many routing, power management, and data dissemination protocols have been specifically designed for WSNs where energy awareness is an essential design issue. The focus
Fusion, Propagation, and Structuring in Belief Networks
 ARTIFICIAL INTELLIGENCE
, 1986
"... Belief networks are directed acyclic graphs in which the nodes represent propositions (or variables), the arcs signify direct dependencies between the linked propositions, and the strengths of these dependencies are quantified by conditional probabilities. A network of this sort can be used to repre ..."
Abstract

Cited by 482 (8 self)
 Add to MetaCart
structured), then probabilities can be updated by local propagation in an isomorphic network of parallel and autonomous processors and that the impact of new information can be imparted to all propositions in time proportional to the longest path in the network. The second part of the paper deals with the problem of finding a
Analysis of TCP Performance over Mobile Ad Hoc Networks Part I: Problem Discussion and Analysis of Results
, 1999
"... Mobile ad hoc networks have gained a lot of attention lately as a means of providing continuous network connectivity to mobile computing devices regardless of physical location. Recently, a large amount of research has focused on the routing protocols needed in such an environment. In this twopart ..."
Abstract

Cited by 511 (5 self)
 Add to MetaCart
Mobile ad hoc networks have gained a lot of attention lately as a means of providing continuous network connectivity to mobile computing devices regardless of physical location. Recently, a large amount of research has focused on the routing protocols needed in such an environment. In this two
Gaussian processes for machine learning
 in: Adaptive Computation and Machine Learning
, 2006
"... Abstract. We give a basic introduction to Gaussian Process regression models. We focus on understanding the role of the stochastic process and how it is used to define a distribution over functions. We present the simple equations for incorporating training data and examine how to learn the hyperpar ..."
Abstract

Cited by 631 (2 self)
 Add to MetaCart
power, and their more complex counterparts (such as feed forward neural networks) may not be easy to work with
Survey on Independent Component Analysis
 NEURAL COMPUTING SURVEYS
, 1999
"... A common problem encountered in such disciplines as statistics, data analysis, signal processing, and neural network research, is nding a suitable representation of multivariate data. For computational and conceptual simplicity, such a representation is often sought as a linear transformation of the ..."
Abstract

Cited by 2241 (104 self)
 Add to MetaCart
A common problem encountered in such disciplines as statistics, data analysis, signal processing, and neural network research, is nding a suitable representation of multivariate data. For computational and conceptual simplicity, such a representation is often sought as a linear transformation
Results 1  10
of
93,390